∞ ÉPREUVES COMMUNES DE CONTRÔLE CONTINU nº 2 ∞ **Sujet 57 – mai 2020**

ÉPREUVE DE MATHÉMATIQUES - CLASSE: Première Générale

EXERCICE 1 5 points

Ce QCM comprend 5 questions indépendantes.

Pour chacune d'elles, une seule des réponses proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

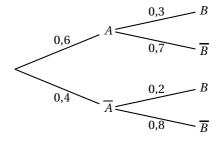
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

Question 1

Dans un repère orthonormé, on considère la parabole \mathcal{P} d'équation $y = 2x^2 + 4x - 11$, de sommet S et d'axe de symétrie la droite \mathcal{D} . Quelle est la bonne proposition?

- **A.** S(-4; 5) et \mathcal{D} a pour équation y = 5.
- **B.** S(-1; -17) et \mathcal{D} a pour équation x = -1.
- **C.** S(-1; -13) et \mathcal{D} a pour équation x = -1.
- **D**. S(-1; -13) et \mathcal{D} a pour équation y = -1.

Question 2


Une expérience aléatoire met en jeu des évènements A et B et leurs évènements contraires \overline{A} et \overline{B} . L'arbre pondéré ci-dessous traduit certaines données de cette expérience aléatoire. On a alors:

B.
$$p(A \cap B) = 0.9$$

C.
$$p_A(B) = 0.18$$

D.
$$p_B(A) = \frac{9}{13}$$

Question 3

On considère le nombre réel $a=\frac{18\pi}{5}$. Un des nombres réels suivants a le même point image que le nombre réel a sur le cercle trigonométrique. Lequel?

A.
$$\frac{3\pi}{5}$$

B.
$$\frac{63\pi}{5}$$

C.
$$\frac{-12\pi}{5}$$
 D. $\frac{-3\pi}{5}$

D.
$$\frac{-3\pi}{5}$$

Question 4

On considère la fonction f définie sur \mathbb{R} par $f(x) = xe^x$.

La fonction dérivée de la fonction f est notée f'. On a alors :

A.
$$f'(x) = e^x$$

B.
$$f'(x) = (1+x)e^x$$
 C. $f'(x) = xe^x$ **D.** $f'(x) = 2xe^x$.

$$C = f'(x) - xe^{x}$$

D.
$$f'(x) = 2xe^x$$
.

Question 5

Parmi les relations suivantes, quelle est celle qui permet de définir une suite géométrique de terme général u_n ?

A.
$$u_n = \frac{u_{n-1}}{2}$$

B.
$$u_n = u_{n-1} + 2$$

C.
$$u_n = 2u_{n-1}^2$$

A.
$$u_n = \frac{u_{n-1}}{2}$$
 B. $u_n = u_{n-1} + 2$ **C.** $u_n = 2u_{n-1}^2$ **D.** $u_n = 2u_{n-1} + 10$.

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 3x^2 + 3x - 63$. On appelle \mathbb{C} sa courbe représentative dans un repère orthonormé.

- 1. Déterminer f'(x).
- **2.** Étudier le signe de f'(x) sur \mathbb{R} .
- **3.** Établir le tableau de variations de la fonction f sur \mathbb{R} .
- **4.** Justifier que la tangente à la courbe \mathcal{C} au point d'abscisse -1 est la droite \mathcal{D} d'équation y = -64.
- **5.** Déterminer en quels points de la courbe \mathcal{C} la tangente à la courbe est parallèle à la droite d'équation y = 3x 100.

EXERCICE 3 5 points

Pour placer un capital de 5000 euros, une banque propose un placement à taux fixe de 5% par an. Avec ce placement, le capital augmente de 5% chaque année par rapport à l'année précédente. Pour bénéficier de ce taux avantageux, il ne faut effectuer aucun retrait d'argent durant les quinze premières années.

On modélise l'évolution du capital disponible par une suite (u_n) . On note u_n le capital disponible après n années de placement.

On dépose 5 000 euros le 1^{er} janvier 2020. Ainsi $u_0 = 5000$.

- 1. Montrer que $u_2 = 5512,5$. Interpréter ce résultat dans le contexte de l'exercice.
- **2.** Exprimer u_{n+1} en fonction de u_n .
- **3.** Quelle est la nature de la suite (u_n) ? Préciser son premier terme et sa raison.
- **4.** Exprimer u_n en fonction de n.
- 5. Justifier que le capital aura doublé après 15 années de placement.

EXERCICE 4 5 points

Dans un repère orthonormé du plan, on considère les points A(-2; 1), B(1; 2) et E(0; -5). On appelle $\mathscr C$ le cercle de centre A passant par B.

- **1.** Justifier qu'une équation du cercle \mathscr{C} est $(x+2)^2 + (y-1)^2 = 10$.
- **2.** Calculer $\overrightarrow{AB} \cdot \overrightarrow{AE}$.
- 3. Que peut-on en déduire pour les droites (AB) et (AE)?
- 4. Déterminer une équation cartésienne de la droite (AE).
- **5.** Calculer les coordonnées des points d'intersection de (AE) et du cercle \mathscr{C} .