

5 points

ÉPREUVE DE MATHÉMATIQUES - CLASSE : Première Générale

EXERCICE 1

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes. Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie. Aucune justification n'est demandée mais il peut être nécessaire d'effectuer des recherches au brouillon pour aider à déterminer votre réponse. Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n'apporte ni ne retire de point. Question 1: Dans le plan muni d'un repère orthonormé, l'ensemble des points M de coordonnées (x; y) vérifiant : $(x+1)^2 + (y-1)^2 = 9$ est: a. un cercle **b.** une droite **c.** une parabole d. l'ensemble vide. Question 2: Combien y-a-t-il de fonctions polynômes du second degré qui s'annulent en 1 et en 3? **a.** 0 **b.** 1 seule d. une infinité. **c.** 2 Question 3: Une fonction polynôme du second degré: a. est nécessairement b. n'est jamais de signe c. est nécessairement d. peut être ou non de de signe constant sur \mathbb{R} constant sur \mathbb{R} positive sur \mathbb{R} signe constant sur \mathbb{R} . Question 4: Pour tout réel x, $e^{2x+1} =$ **a.** $e^{2x} + e^{-x}$ **b.** $e^{2x} \times e$ **c.** $(e^{x+1})^2$ **d.** $(2x+1) \times e$. Question 5: Dans un repère orthonormé, la droite d d'équation cartésienne 2x - 5y - 4 = 0**b.** passe par le point de **c.** admet \vec{u} $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ pour **d.** admet \vec{u} $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ pour **a.** coupe l'axe des orvecteur directeur. données au point de coordonnées (2; 0,2) vecteur normal coordonnées (0; -4)

EXERCICE 2 5 points

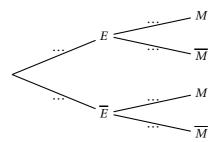
Le principe d'un Escape Game est le suivant : une équipe de participants est enfermée à l'intérieur d'une salle à thème et doit réussir à en sortir en moins d'une heure (on parle alors de partie réussie). Au-delà d'une heure, les participants sont libérés et la partie est perdue.

Un exploitant d'Escape Game propose à ses participants de faire deux parties à la suite : la première partie se déroule dans la salle à thème « Espion », la seconde partie dans la salle à thème « Musée ». Il dispose des données suivantes :

- lorsqu'une équipe joue dans la salle à thème « Espion », la probabilité qu'elle réussisse sa partie « Espion » est égale à 0,5;
- lorsqu'une équipe a réussi la partie « Espion », la probabilité qu'elle réussisse sa partie « Musée » est égale à 0,6;
- lorsqu'une équipe n'a pas réussi la partie « Espion », la probabilité qu'elle réussisse sa partie « Musée » est égale à 0,45.

Une équipe est choisie au hasard. On note les événements suivants :

- E : « l'équipe réussit la partie « Espion » ;
- M : « l'équipe réussit la partie « Musée ».
- 1. Sur la copie, recopier et compléter l'arbre de probabilités suivant :



- 2. Déterminer la probabilité que l'équipe réussisse les deux parties.
- 3. Montrer que la probabilité que l'équipe réussisse la partie « Musée » est égale à 0,525.
- **4.** Quelle est la probabilité qu'une équipe échoue à la partie « Espion » sachant qu'elle a réussi la partie « Musée »? On donnera la réponse arrondie à 10^{-2} .
- 5. Pour chacune des deux parties qui sont gagnées, une équipe reçoit 2 € de réduction pour une prochaine visite. Elle peut donc recevoir 0, 2 ou 4 € de réduction.Si un très grand nombre d'équipes jouent les deux parties, quel est le montant moyen de la réduction obtenue à la fin des deux parties? Expliquer la démarche.

EXERCICE 3 5 points

En France métropolitaine, 2018 a été l'année la plus chaude d'après les relevés météorologiques. La température moyenne y a été de 14 °C; elle a dépassé de 1,4 °C la normale de référence calculée sur la période 1981-2010. (*Source : site Météo France*)

- 1. Pour modéliser la situation, on considère l'année 2018 comme l'année zéro et on suppose que cette hausse moyenne de 1,4 °C par an se poursuit chaque année. Pour tout entier naturel n, on note alors T_n la température moyenne annuelle en France pour l'année 2018+n.
 - **a.** Quelle est la nature de la suite (T_n) ainsi définie? On donnera son premier terme et sa raison.
 - **b.** On considère qu'au-delà d'une température moyenne de 35 °C les corps ne se refroidissent pas et il devient insupportable pour les humains de continuer à habiter cette région que l'on qualifie alors d'inhabitable.
 - Selon le modèle considéré, en quelle année la France deviendrait-elle inhabitable pour les humains? Justifier.
- 2. À cause du réchauffement climatique, certaines régions risquent de connaître une baisse de $10\,\%$ par an des précipitations moyennes annuelles mesurées en millimètres (mm). Dans une région du nord de la France, les précipitations moyennes annuelles étaient de $673\,\mathrm{mm}$ en 2018. On considère l'année 2018 comme l'année zéro et on suppose que cette baisse de $10\,\%$ par an se poursuit chaque année. Pour tout entier naturel n, on note P_n les précipitations annuelles moyennes en mm dans cette région pour l'année 2018+n.
 - **a.** Quelle est la nature de la suite (P_n) ainsi définie? On donnera son premier terme et sa raison.
 - **b.** Pour tout entier naturel n, exprimer P_n en fonction de n.
 - $\boldsymbol{c.}\,$ On donne le programme Python suivant :

```
def precipitations(J):
    I = 673
    n = 0
    while I > J:
        I = 0.9*I
        n = n+1
return n+2018
```

L'exécution de « precipitations (300) » renvoie la valeur 2026. Que représente cette valeur pour le problème posé?

EXERCICE 4 5 points

Soit f la fonction définie sur $[0; +\infty[$ par

$$f(x) = -x^2 + 2x + 4.$$

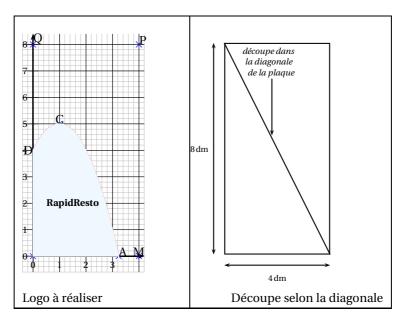
Dans le plan muni d'un repère orthonormé, on note $\mathcal C$ sa courbe représentative.

- 1. Déterminer les variations de la fonction f sur $[0; +\infty[$.
- **2.** Déterminer la valeur exacte de l'abscisse du point A, intersection de la courbe \mathcal{C} et de l'axe des abscisses, puis en donner une valeur approchée à 10^{-2} près.
- 3. On note $\mathcal T$ la tangente à la courbe $\mathcal C$ au point B d'abscisse 2. Déterminer l'équation réduite de la droite $\mathcal T$
- **4.** Tracer la droite \mathcal{T} sur le graphique fourni **en annexe, qui est à rendre avec la copie**.
- **5.** On admet que la courbe \mathcal{C} est toujours en-dessous de la droite \mathcal{T} .

La société Logo reçoit une commande de l'entreprise RapidResto, qui lui demande de confectionner des logos dans des plaques rectangulaires de largeur 4 dm et de hauteur 8 dm selon le modèle ci-dessous.

Le bord supérieur du logo est modélisé par la courbe ${\mathcal C}$ tracée dans le repère orthonormé figurant sur l'annexe dont l'unité graphique est le décimètre (dm).

Les figures ci-dessous ne sont pas à l'échelle.



Dans un souci d'économie, l'entreprise Logo espère pouvoir réaliser deux logos identiques dans une seule plaque, en la coupant dans sa diagonale.

Est-ce possible? Justifier à l'aide des questions précédentes.

ANNEXE

EXERCICE 4, question 4.

À rendre avec la copie

