Serie technologique e3c nº 47 mai 2020

ÉPREUVE DE MATHÉMATIQUES - Première technologique

PARTIE I

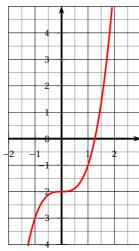
Exercice 1 5 points

Automatismes Sans calculatrice Durée: 20 minutes

	Énoncé	Réponse
1.	Calculer: $A = 2 + 5 \times \frac{4}{3}$	
2.	Quelle est l'écriture scientifique de 0,035?	
3.	Simplifier : $B = \frac{10^5}{10}$.	
4.	Convertir 100 mètres par minute en kilomètres par heure.	
5.	Factoriser l'expression : $5x^3 + 4x$.	
6.	Développer : $(2x+3)(4-x)$.	

On considère la fonction f définie sur \mathbb{R} par : $f(x) = x^3 - 2$.

Ci-dessous, sa représentation graphique :



Avec la précision permise par ce graphique, répondre aux questions suivantes :

7.	Quelle est l'image de 1 par f ?	
8.	Résoudre graphiquement l'inéquation $f(x) \ge -1$.	
9.	Tracer dans le repère précédent la droite d'équation $y = x - 2$.	
10.	Donner le nombre de solutions de l'équation $f(x) = x - 2$.	

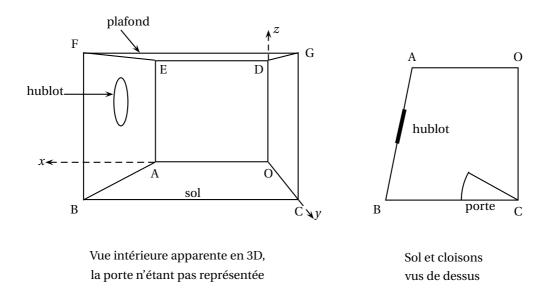
Partie II

Calculatrice autorisée

Cette partie est composée de trois exercices indépendants

Exercice 2 5 points

Dans cet exercice, on étudie une cabine de bateau représentée approximativement ci-dessous :



Dans le repère orthonormal d'origine O, donné ci-dessus en 3D, on donne A(2; 0; 0) et C(0; 3; 0). Les valeurs sont exprimées en mètres.

Par ailleurs, (BC) // (OA), BC = 2.80 m, CG = BF = AE = OD = 2.10 m. medskip

- 1. Donner les coordonnées des points D et E.
- **2.** On veut ranger un mat de planche à voile dans la cabine. Sa longueur est de 4 m. Est-ce possible?

Dans cette question, on veillera à faire figurer toute trace de recherche, même incomplète.

- **3.** Le hublot de la cabine est assimilé à un cercle de centre Ω, situé à égale distance des droites (AE) et (BF), et de rayon 40cm.
 - a. Sachant que la troisième coordonnée de Ω est 1,40, positionner Ω sur l'annexe à rendre avec la copie.
 - b. Sur l'annexe à rendre avec la copie, tracer en perspective cavalière un parallélogramme représentant un carré circonscrit au hublot : on admettra que le diamètre du hublot fait environ le quart de la longueur AB.

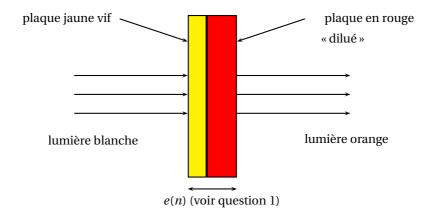
On laisser a apparents les traits de construction sur le dessin.

Tracer ensuite le contour du hublot en perspective cavalière.

Exercice 3 5 points

Réalisation d'une plaque de verre teinté

Un maître verrier veut fabriquer des carreaux oranges pour un vitrail. Pour cela, il dispose d'une plaque de verre de couleur jaune et d'épaisseur 3 mm. Il envisage d'accoler à cette plaque une couche de verre légèrement teinté en rouge, dont il faudra calculer l'épaisseur, selon le schéma suivant :



1. On modélise la plaque rouge par une succession de n couches élémentaires de 0,5 mm d'épaisseur. L'épaisseur totale des deux plaques jointes, jaune et rouge, en mm, sera notée e(n).

On considère alors la suite e définie sur \mathbb{N} par : $n \mapsto e(n)$.

- **a.** Donner la valeur du premier terme e(0) (aucune couche de rouge ajoutée). Calculer e(1), e(2), e(3).
- **b.** Exprimer e(n+1) en fonction de e(n) et préciser la nature de la suite e.
- 2. On admet que la plaque jaune agit comme un filtre de lumière blanche ne transmettant que les radiations primaires rouge et verte. Chaque couche élémentaire de verre rouge a pour effet de réduire de 7 % le flux de la radiation verte qui la traverse, tandis que le flux de radiation rouge reste inchangé.

On considère alors la suite v définie sur \mathbb{N} par : $n \mapsto v(n)$, où v(n) est le flux de la radiation verte, récupéré après la traversée de n couches de verre rouge. Le premier terme de la suite est v(0) = 100.

- **a.** Calculer v(1), v(2), v(3). On arrondira les résultats au dixième.
- **b.** On donne v(15) = 33,7. Placer dans un repère les points de coordonnées (n; v(n)), pour n = 0, puis 4, et 15. Peut-on conjecturer que v soit une suite arithmétique? Justifier.
- **c.** Exprimer v(n+1) en fonction de v(n). Donner la nature et les éléments caractéristiques de la suite v, ainsi que son sens de variation.
- **3.** On admet que $v(n) = 100 \times 0.93^n$.

Le maître verrier veut récupérer une lumière orange (comportant plus de rouge que de vert). Il cherche un nombre n de plaques permettant de réduire le flux initial v(0) de radiation verte, de sorte que :

$$45 \leqslant v(n) \leqslant 55$$
.

Pourra-t-il atteindre son objectif, sachant que le carreau doit avoir une épaisseur totale e(n) comprise entre 6 et 9 mm?

Dans cette question, on veillera à faire figurer toute trace de recherche, même incomplète.

Exercice 4 5 points

Soit f une fonction polynôme de degré 3, définie sur \mathbb{R} .

Le plan étant muni d'un repère, on note \mathcal{C}_f la courbe représentative de f. On admet qu'il existe un unique nombre réel k tel que :

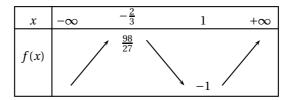
pour tout réel
$$x$$
, $f(x) = (2x-1)(x^2-k)$.

On note f' la fonction dérivée de f.

- **1.** Expliquer pourquoi \mathscr{C}_f passe toujours par le point A $\left(\frac{1}{2}; 0\right)$.
- **2.** On admet que, pour tout réel x, $f(x) = 2x^3 x^2 2kx + k$.
 - **a.** En déduire que f'(1) = 4 2k.
 - **b.** On sait que la tangente à \mathscr{C}_f au point d'abscisse 1 est parallèle à l'axe des abscisses. Traduire cette information l'aide de f' et en déduire que k = 2.
- **3.** On admet que, pour tout réel x, $f'(x) = 6x^2 2x 4$.

On remarque que f' est une fonction polynôme de degré 2.

- **a.** Montrer que : pour tout réel x, f'(x) = (x-1)(6x+4).
- **b.** Justifier alors que le tableau de variations de la fonction f est le suivant :



(On ne justifiera pas les valeurs $\frac{98}{27}$ et -1).