Jeux et physique-chimie - Corrigé et grille d'analyse

Question	Exemple de réponse attendue	Niveau de difficulté	Registre	Complexité
A.1.	$Ec = \frac{1}{2}.m.v^{2}$ $Epp = m.g.z$ $Em = Ec + Epp = \frac{1}{2}.m.v^{2} + m.g.z$	Niveau 1	Restitution de connaissances	Tâche simple
A.2.	L'énergie mécanique se conserve au cours du mouvement, car les frottements sont négligeables. Em est représentée par la courbe 1 (Em = constante). Si x = 0 alors z = 0 donc Epp = 0. Epp est donc représentée par la courbe 3. On en déduit que Ec est représentée par la courbe 2. Toute autre argumentation cohérente est acceptée.	Niveau 2	Raisonnement qualitatif	Tâche simple
B.1	Lors du choc il y a une perte d'énergie de 15 mJ. $E_{m2,G0} = 42 - 15 = 27$ mJ.	Niveau 1	Raisonnement quantitatif	Tâche simple
B.2	Au point G _{max} la vitesse de la boule s'annule car elle ne monte pas plus haut. Sa vitesse étant nulle, son énergie cinétique est nulle. Toute autre argumentation cohérente est acceptée.	Niveau 2	Raisonnement quantitatif	Tâche simple
B.3	On a Em _{2,Gmax} = m.g.z _{Gmax} puisque en G _{max} l'énergie cinétique est nulle.	Niveau 1	Raisonnement qualitatif	Tâche simple
B.4	L'énergie mécanique de la boule 2 restant constante pendant son mouvement : $Em_{2,Gmax} = E_{m2,G0}$. D'où $z_{Gmax} = Em_{2,Gmax} / 8201(mg) = E_{m2,G0} / (mg) = 0,027 / (0,080 × 9,8) = 0,034 m$. L'altitude est inférieure à l'altitude de départ z_G qui vaut 0,054 m.	Niveau 3	Raisonnement quantitatif	Tâche simple et complexe pour la conclusion
C.1	À une oxydation est associée une perte d'électron(s).	Niveau 1	Restitution de connaissances	Tâche simple
C.2.1	Le glucose est l'espèce du couple oxydant réducteur qui cède les électrons, c'est donc le réducteur du couple. Tout autre raisonnement cohérent sera accepté.	Niveau 2	Restitution de connaissances	Tâche simple
C.2.2	$BM^{+}(aq) / BMH(aq) : BM^{+}(aq) + H^{+}(aq) + 2 e^{-} = BMH(aq)$	Niveau 2	Raisonnement qualitatif	Tâche simple
C.2.3	$C_6H_{12}O_6(aq) + BM^+(aq) + H_2O(I) \rightarrow C_6H_{12}O_7(aq) + BMH(aq) + H^+(aq)$	Niveau 2	Raisonnement qualitatif	Tâche simple
C.3	La solution devient bleue après agitation car la réaction (1) se produit et il y a formation de BM ⁺ (seule espèce chimique colorée : bleue). Cette espèce réagit ensuite avec le glucose (réaction (2)) et se transforme en BMH incolore ; la solution devient incolore dans un second temps.	Niveau 3	Raisonnement qualitatif	Tâche complexe
D.1	Le volume de dioxygène est $V(O_2) = 0.2 \times V_{air} = 0.048 L$. $n_i O_2 = VO_2 / Vm = 0.048/24 = 0.0020 mol$. $n_i C_6H_{12}O_6 = m / M = 5/180 = 0.028 mol$.	Niveau 2	Raisonnement quantitatif	Tâche simple
D.2	Tout raisonnement cohérent sera accepté. Le candidat peut utiliser ou non un tableau d'avancement ou non. Par exemple : en utilisant les coefficients stœchiométriques des deux réactions, on montre qu'une mole de dioxygène disparaît avec une mole de glucose. Or $n_i O_2 < n_i C_6 H_{12} O_6$ donc le dioxygène est le réactif limitant ; disparaissant totalement dans le flacon au fur et à mesure des agitations, il ne peut plus oxyder BMH(aq) et la solution ne peut plus devenir bleue.	Niveau 3	Raisonnement quantitatif	Tâche complexe