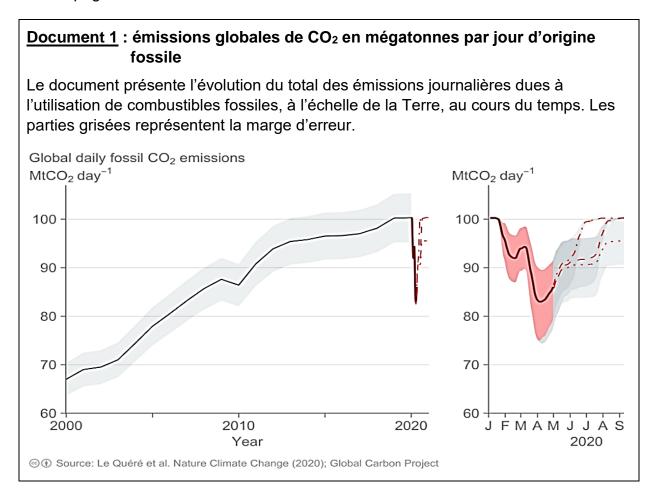

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tior	ı :			
	(Les nu	uméros	figure	nt sur	la con	vocatio	on.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

ÉVALUATION
CLASSE: Terminale
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique
DURÉE DE L'ÉPREUVE : 2 h
Niveaux visés (LV) : ø
Axes de programme : ø
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
\Box Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\Box Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 8

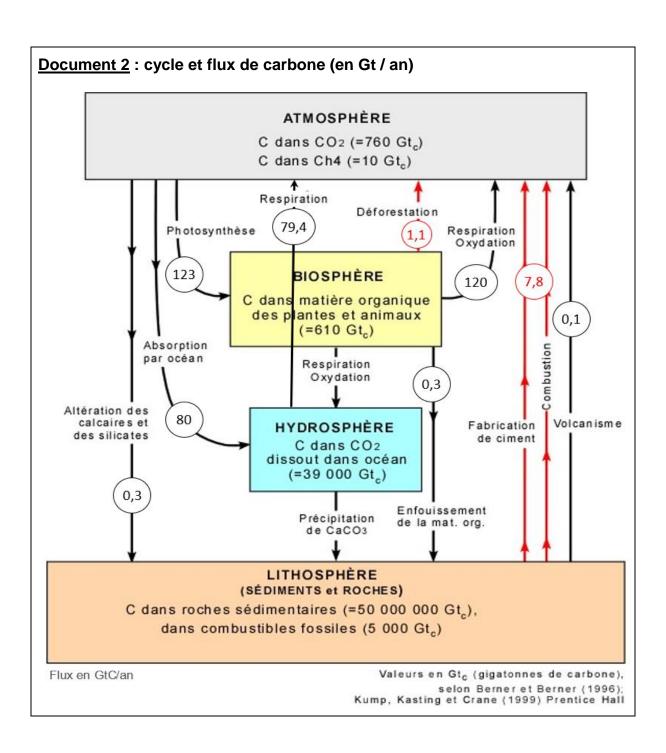
Le candidat traite les deux exercices qui sont proposés dans ce sujet.

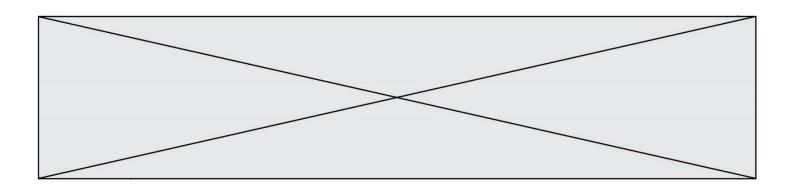
Exercice 1 - Niveau terminale


Thème « Science, climat et société »

Confinement et atmosphère

Sur 10 points


L'activité humaine a des conséquences sur la composition de l'atmosphère, notamment parce qu'elle conditionne les émissions de CO₂.


Nous nous proposons ici d'étudier une évolution récente de l'atmosphère durant les premiers mois de la crise sanitaire de la Covid 19 et les mesures qui l'ont accompagnées.

1. En s'appuyant sur l'analyse du document 1, préciser comment ont évolué les émissions de CO₂ de 2000 à 2020, à l'échelle globale de la Terre et proposer une hypothèse quant aux causes des variations constatées pendant les premiers mois de l'année 2020.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

- **2.** À l'aide de connaissances et en s'appuyant sur le document 2, identifier les deux réservoirs de carbone les plus importants et préciser les flux de carbone entre ces deux réservoirs.
- **3.** En s'appuyant sur le document 2, identifier les flux de nature anthropique sur ce cycle.
- **4.** En effectuant un bilan à partir de données du document 2, montrer que la quantité de carbone augmente avec le temps dans l'atmosphère.
- **5.** Expliquer pourquoi on qualifie un combustible fossile de ressource non renouvelable.
- **6.** Sachant qu'une mole d'essence produit huit moles de CO₂, prouver par le calcul qu'un kilogramme d'essence produit une masse de CO₂ d'environ 3,1 kg, en utilisant les données suivantes.

En première approche, l'équation de la réaction de combustion de l'essence peut être assimilée à celle de la combustion de l'octane (C₈H₁₈) :

$$2 C_8 H_{18}(\ell) + 25 O_2(g) \longrightarrow 16 CO_2(g) + 18 H_2O(g)$$

 $\underline{\text{Donn\'ees}}$: Une mole d'octane C_8H_{18} a une masse de 114,0 g. Une mole de CO_2 a une masse de 44,0 g.

- **7.** En déduire la masse de CO₂ produite pour une quantité de 2,8.10⁹ kg d'essence correspondant à la consommation mondiale journalière sans crise sanitaire.
- **8.a.** Comparer la valeur des émissions de CO₂ calculée à la question 7 à la valeur lue sur le graphique du document 1 pour le mois d'avril 2020.
- **8.b.** Formuler des hypothèses pour expliquer la différence constatée.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	n :			
Liberté · Égalité · Fraternité RÉPLINI JOHE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 2 - Niveau terminale

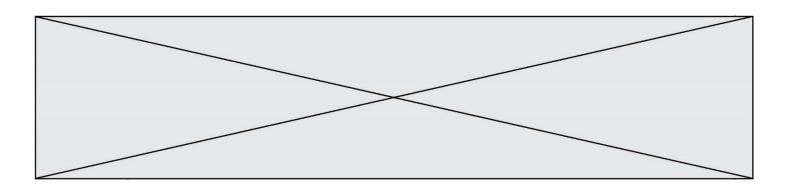
Thème « Le futur des énergies »

Les impacts de la combustion sur l'environnement et la santé

Sur 10 points

La combustion de carburants fossiles et de la biomasse libère du dioxyde de carbone qui a un impact environnemental majeur.

Il est également reconnu par l'Organisation mondiale de la santé (OMS) que la santé publique est impactée par la pollution de l'air. Le Ministère des Solidarités et de la Santé estime qu'environ 48 000 personnes décèdent chaque année des effets de la pollution de l'air en France.

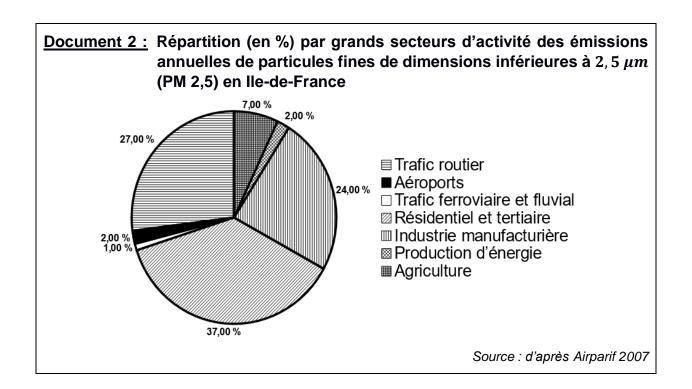

On se propose d'étudier la part et les impacts de la combustion de carburants fossiles et de biomasse sur la santé humaine.

<u>Document 1 :</u> Production de dioxyde de carbone lors de la combustion de carburants fossiles et de la biomasse

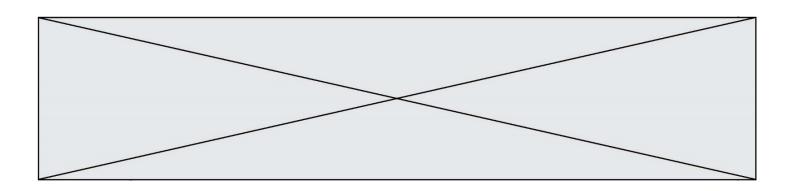
Combustible	Équation de la réaction
Gaz naturel méthane CH ₄	$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$
Essence modélisée par l'octane C ₈ H ₁₈	2 C ₈ H ₁₈ + 25 O ₂ → 16 CO ₂ +18 H ₂ O
Biomasse (bois) modélisée par C ₆ H ₁₀ O ₅	$C_6H_{10}O_5 + 6 O_2 \rightarrow 6 CO_2 + 5 H_2O$

Énergie massique libérée par kg de combustible brûlé :

Combustible	Gaz naturel	Essence	Biomasse
Énergie massique libérée	50 MJ.kg ⁻¹	45 MJ.kg ⁻¹	17 MJ.kg ⁻¹


Masse de CO₂ produite pour 1 MJ d'énergie obtenue :

Combustible	Gaz naturel	Essence	Biomasse
Masse de CO ₂ produite	56 g	À calculer à la question 5	95 g


Source : d'après J.-C. Guibet, Publications de l'Institut français du pétrole, 1997 et W.-M. Haynes, CRC Handbook of Chemistry and Physics, 2012

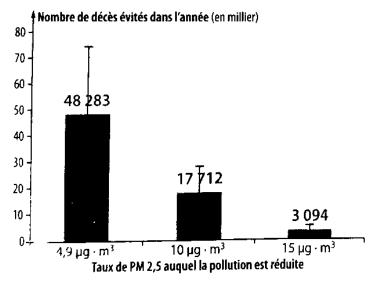
- **1-** Indiquer le (ou les) combustible(s) mentionnés dans le document 1 pouvant être utilisés comme source(s) d'énergie renouvelable.
- **2-** Calculer la masse d'essence, notée $m_{\rm essence}$, nécessaire pour obtenir une énergie de valeur 1 MJ.
- **3-** Sachant que la masse d'une mole d'essence est égale à 114 g, vérifier que la quantité de matière, notée $n_{\rm essence}$, présente dans la masse d'essence nécessaire pour obtenir une énergie de valeur 1 MJ vaut environ : $n_{\rm essence} = 0.2$ mol.
- **4-** À l'aide de l'équation de la réaction modélisant la combustion de l'essence, vérifier que la quantité de matière de dioxyde de carbone produite $n_{\rm CO_2}$ est telle que $n_{\rm CO_2}=8n_{\rm essence}$. Calculer $n_{\rm CO_2}$.
- **5-** La masse d'une mole de dioxyde de carbone étant égale à 44 g, déterminer la masse de CO₂ libérée dans l'atmosphère par la combustion de l'essence pour obtenir une énergie de valeur 1 MJ.
- **6-** Comparer la masse de dioxyde de carbone émise par MJ produit pour chaque combustible du document 1 et indiquer quel est l'impact environnemental majeur du dioxyde de carbone.
- **7-** Identifier les 3 secteurs d'activité émettant le plus de particules fines, à partir du document 2 de la page suivante.

Modèle CCYC : ©DNE Nom de famille (naissanc (Suivi s'il y a lieu, du nom d'us																			
Prénom(s	s) : [
N° candida	nt : [N° c	d'ins	crip	tior	n :			
	(L	Les nu	méros	figure	nt sur	la con	vocatio	n.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) I	e :																		1.1

8- À partir de l'étude présentée dans le document 3 de la page suivante, rédiger un texte argumenté expliquant la signification du chiffre : « 48000 décès par an en France sont dus à la pollution ».

Document 3: Impacts sanitaires de la pollution de l'air en France (2016)

La plupart des sources de pollution atmosphériques émettent des particules fines de diamètre inférieur à 2,5 micromètres (PM $_{2.5}$): transports, résidentiel/tertiaire, agriculture, industrie. Leur contribution relative à la pollution atmosphérique varie cependant selon le lieu.


Désirant déterminer l'effet qu'une réduction de pollution aurait sur la mortalité prématurée en France, les chercheurs ont recueilli pour l'année 2007 les mesures de concentrations moyennes en particules fines $PM_{2.5}$ et le nombre total de décès.

Ils ont ensuite appliqué une relation mathématique, établie dans des études précédentes, afin de calculer l'effet de différents scénarios :

- réduction à 4,9 µg.m⁻³, valeur que l'on peut mesurer dans des villages de haute montagne à faible activité économique ;
- réduction à 10 µg.m⁻³, valeur recommandée par l'OMS ;
- réduction à 15 µg.m⁻³, objectif fixé par le Plan national santé-environnement de 2009.

La population française en 2019 est de 65 millions d'habitants.

Nombre de morts qui auraient été évités dans l'année selon la modélisation réalisée par les chercheurs

Source : d'après Santé Publique France

https://www.santepubliquefrance.fr/presse/2016/impacts-sanitaires-de-la-pollution-de-l-air-en-france-nouvellesdonnees-et-perspectives