Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

ÉVALUATIONS
CLASSE: Terminale
VOIE : ☐ Générale ☒ Technologique ☐ Toutes voies (LV)
ENSEIGNEMENT : Mathématiques
DURÉE DE L'ÉPREUVE : 2h
PREMIÈRE PARTIE : CALCULATRICE INTERDITE
DEUXIÈME PARTIE : CALCULATRICE AUTORISÉE
☑ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être
dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est
nécessaire que chaque élève dispose d'une impression en couleur.
\square Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le
jour de l'épreuve.
Nombre total de pages :6

PARTIE I: Automatismes (5 points)

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tior	n:			
	(Les no	uméros	figure	ent sur	la con	vocati	on.)		1	•							•	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

PARTIE I: Automatismes (5 points)

Durée : 20 minutes

Calculatrice interdite

	Enoncé	Réponse
	Une augmentation de 20% suivie d'une	
1)	réduction de 20% est équivalente	
	à multiplier la valeur initiale par :	
2)	$f(x) = x^2 + 3x + 1 \text{ sur } \mathbb{R}.$ Calculer f' la dérivée de f :	f'(x) =
3)	On donne la formule : $T = \frac{V_f - V_i}{V_i}$	$V_{ m f} =$
	Exprimer V_f en fonction de T et V_i	
4)	Ecrire le nombre ci-contre sous la forme d'une seule puissance de 7.	$\frac{7^3 \times 7^{-5}}{7^5} =$
5)	$f(x) = 2(x-1)(x+3) \mathrm{sur} \mathbb{R} $. Vrai ou faux : La fonction f est positive sur $[-3;1]$:	
	La fonction h définie sur $\mathbb R$ est	
	représentée ci-dessous.	
6)	Résoudre l'inéquation $h(x) \geq 3$	

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :	(Les nu	4	£								N° c	d'ins	crip	otion	n :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les no	ineros	/	ent sur	ia con))II.)											1.1

	$f(x) = -2x^2 + 5x + 3 \text{ sur } \mathbb{R}$ Vrai ou faux :	
7)	Le point P (1 ; 4) appartient à la courbe \mathcal{C}_f .	
8)	Donner le tableau de signe de $g(x) = -3x + 2$	
9)	On donne ci-contre le début du tableau de variation d'une fonction f définie et dérivable sur $\mathbb R$. Compléter ce tableau :	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10)	On donne le diagramme en boîte suivant :	La valeur du 3^e quartile est : $Q_3 =$

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	ı :			
Liberté Égalité Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocation	on.)]									1.1

PARTIE II

La calculatrice est autorisée. Cette partie est composée de trois exercices indépendants.

EXERCICE 1 (5 points)

Une entreprise place un capital de $10\,000\,$ à intérêts simples au taux annuel de $1,5\,$ %. Cela signifie que, chaque année, le montant des intérêts est égal à 1.5% du capital placé initialement. On note C_n le capital acquis au bout de n années, pour n entier naturel. Ainsi $C_0=10\,000$.

- **1.** Calculer C_1 et C_2
- **2.** Déterminer la nature de la suite (C_n) .
- **3.** Exprimer le terme général C_n en fonction de n.
- 4. Déterminer le montant du capital après 7 ans de placement.
- 5. Compléter la fonction Python donnée en annexe à rendre avec la copie afin que l'exécution de cette fonction affiche, pour une valeur donnée de k, les k premiers termes de la suite (C_n) .

EXERCICE 2 (5 points)

Un artisan bijoutier qui fabrique des bracelets fait une étude de coût pour une production comprise entre 5 et 40 objets. Le coût total, en euro, de la production de x bracelets est donné par la formule :

$$C(x) = x^2 + 50x + 100 \text{ pour } x \in [5; 40]$$

Pour une production de x bracelets, le coût moyen de production d'un bracelet est alors donné par la formule :

$$C_m(x) = \frac{C(x)}{x}$$
 pour $x \in [5; 40]$

1. Calculer le coût total de la production de 10 bracelets puis le coût moyen de production d'un bracelet pour cette production de 10 bracelets.

On pose
$$f(x) = x + 50 + \frac{100}{x}$$
 pour *x* appartenant à [5; 40].

- **2.** Calculer f'(x)
- 3. Prouver que

$$f'(x) = \frac{(x-10)(x+10)}{x^2}$$

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	า :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	on.)			•							1	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/															1.1

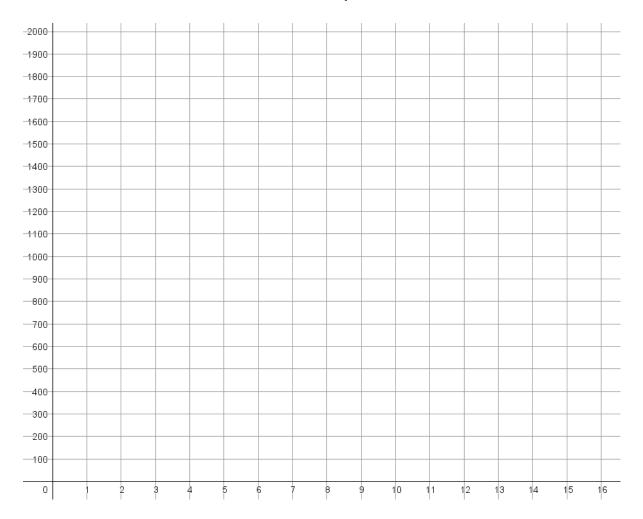
- **4.** Étudier le signe de f'(x) et dresser le tableau de variation de f.
- **5.** Déterminer le nombre de bracelets à fabriquer pour que le coût moyen de production d'un bracelet soit minimal.

EXERCICE 3 (5 points)

Une petite commune rurale a vu sa population augmenter fortement en quelques années. Le tableau suivant donne l'évolution du nombre d'habitants sur la période considérée.

Année	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Rang de	1	2	2	4	5	6	7	8	9	10	11
l'année : x_i	1	2	3	4	3	6	,	0	9	10	11
Nombre	450	495	545	600	660	725	800	880	960	1 060	1 170
d'habitants y_i	450	495	545	600	000	725	600	000	900	1 000	11/0

- 1. Calculer le taux d'évolution du nombre d'habitants de l'année 2010 à l'année 2020.
- 2. Montrer que le taux d'évolution annuel moyen du nombre d'habitants de l'année 2010 à l'année 2020, arrondi à 0,1 point, est de 10 %.
- 3. Sur le graphique, en annexe à rendre avec la copie, représenter la série statistique du tableau ci-dessus par un nuage de points $(M_i(x_i; y_i))$.
- **4.** À l'aide de la calculatrice, déterminer une équation de la droite *D* d'ajustement affine de *y* en *x* obtenue par la méthode des moindres carrés. Les coefficients seront arrondis au dixième. Puis tracer cette droite sur le même graphique donné **en annexe à rendre avec la copie.**
- **5.** En supposant que cet ajustement demeure valable pendant plusieurs années, déterminer par un calcul le nombre d'habitants de la commune en 2025. Arrondir à la dizaine près.


Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tion	ı :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)										'	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

ANNEXE (à rendre avec la copie)

Exercice 1 Question 5)

```
def Term(k):
    c=10000
    print(c)
    for i in range (.....):
        c=....
    print(c)
```

Exercice 3: Questions 3. et 4.

