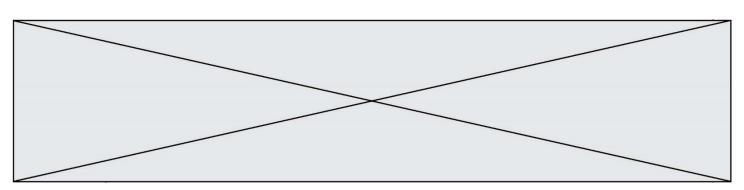

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																						
Prénom(s) :																						
N° candidat :														N° (d'ins	scrip	otio	ı :				
	(Les numéros figurent sur la convocation.)																					
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/																			1.1

ÉVALUATION
CLASSE: Première
VOIE : □ Générale ⊠ Technologique □ Toutes voies (LV)
ENSEIGNEMENT: Mathématiques
DURÉE DE L'ÉPREUVE : 2 heures
PREMIÈRE PARTIE : CALCULATRICE INTERDITE
DEUXIÈME PARTIE : CALCULATRICE AUTORISÉE
☑ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

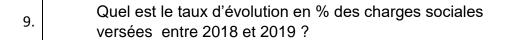

T1CMATH04826

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																						
Prénom(s) :																						
N° candidat :														N° c	d'ins	crip	otio	n:				
(Les numéros figurent sur la convocation.)															•							
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/																			1.1

PARTIE I Exercice 1 (5 points)

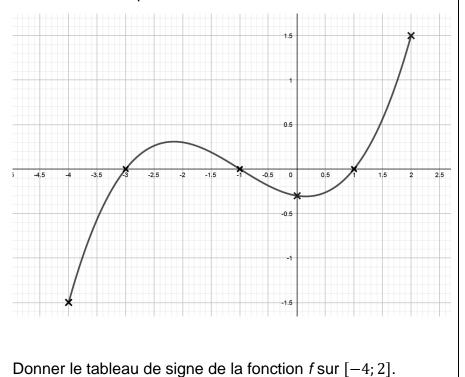
Automatismes (5 points) Sans calculatrice Durée : 20 minutes


	Enoncé	Réponse
1.	Augmenter de 57% une quantité revient à multiplier cette quantité par	
2.	Un prix de 30 € est augmenté de 11 %. Quelle est alors sa valeur ?	
3.	Augmenter un nombre de 10 % puis le diminuer de 10 % revient à le multiplier par :	
4.	Résoudre l'équation suivante $3x + 7 = 4x - 8$.	
5.	La distance de freinage d'un véhicule est donnée par la formule suivante : $D=\frac{V^2}{2\times G\times a}$. Lorsque $V=6,G=10$ et $a=0,6$, quelle est la valeur de D ?	
6.	Un véhicule roule à 72 km/h, quelle est sa vitesse en m/s.	
7.	Résoudre dans $\mathbb R$ l'inéquation $5(2-x) \le 10x + 5$.	



Pour les questions 8. et 9., on utilisera le tableau donné ci-dessous

Voici les sommes versées au titre des charges sociales par une entreprise.


Année	2016	2017	2018	2019
Charges sociales	55 000	60 000	84 000	79 800
Indices	100	109,1	157,7	145,1

On considère la fonction f définie sur [-4; 2].

La courbe représentative de la fonction f est donnée cicontre dans un repère orthonormé.

10.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

PARTIE II Exercice 2 (5 points)

Pierre vend des tee-shirts durant toute la durée du Tour de France, il se déplace de ville en ville en même temps que la caravane du Tour de France.

Pierre a un stock de 5 000 tee-shirts au départ du Tour de France. A chaque départ d'une étape, il vend 7 % de son stock de la veille.

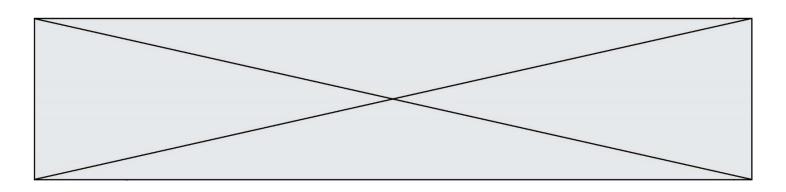
On note $u_0 = 5\,000\,$ et pour tout nombre entier naturel n, $u_n\,$ désigne le nombre de tee-shirts restant en stock à l'arrivée de l'étape $n\,$ de Tour de France.

- **1.** Calculer u_1 et u_2 .
- **2.** Exprimer u_n en fonction de n.
- 3. Sachant que le Tour de France comporte 21 étapes, déterminer le nombre de tee-shirts invendus par Pierre à la fin du Tour de France.
- **4.** Pierre sait qu'il fera des bénéfices lorsqu'il aura vendu 3 500 tee-shirts. Pour déterminer à partir de quelle étape il réalisera des bénéfices, il souhaite écrire un algorithme. Compléter cet algorithme écrit en langage Python :

```
def benefice():

n = 0

u=5000


while u > ...:

u = ...

n = ...

return n
```

5. Déterminer à partir de quelle étape, Pierre fera des bénéfices.

Exercice 3 (5 points)

Dans une ville où le maire souhaite mettre en place de façon systématique le tri des déchets, 38 % des habitants de la ville trient déjà leurs déchets. On interroge au hasard 3 habitants de cette ville, de façon aléatoire et indépendante dans la rue pour savoir si ils trient leurs déchets. On désigne par X la variable aléatoire égale au nombre de réponses positives.

On suppose que le nombre d'habitants de cette ville est suffisamment grand pour que le sondage soit assimilé à un tirage avec remise.

- 1. Quelle est la loi suivie par la variable aléatoire X? Justifier la réponse.
- **2.** Calculer P(X=0).
- 3. Calculer la probabilité qu'au moins une personne interrogée trie ses déchets.
- **4.** Calculer l'espérance de la variable aléatoire *X*.
- 5. Interpréter ce résultat dans le contexte de l'exercice.

Exercice 4 (5 points)

On considère la fonction f définie sur l'intervalle [-1;3] par

$$f(x) = 2x^3 - 6x^2 + 5.$$

- **1.** Déterminer l'image de -4 par la fonction f.
- **2.** On désigne par f' la fonction dérivée de la fonction f sur l'intervalle [-1; 3]. Montrer que pour tout $x \in [-1; 3]$, f'(x) = 6x(x-2).
- **3.** Déterminer le signe de f'(x) sur l'intervalle [-1;3].
- **4.** En déduire le tableau de variation de la fonction f sur l'intervalle [-1; 3].
- **5.** Déterminer l'équation de la tangente de la courbe représentative de la fonction *f* au point d'abscisse 1.