
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	ıméros I	figure	nt sur	la con	ocatic I	n.)		1									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

ÉVALUATION
CLASSE: Première
VOIE : □ Générale ⊠ Technologique □ Toutes voies (LV)
ENSEIGNEMENT: Mathématiques
DURÉE DE L'ÉPREUVE : 2 heures
PREMIÈRE PARTIE : CALCULATRICE INTERDITE
DEUXIÈME PARTIE : CALCULATRICE AUTORISÉE
☑ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 5

PARTIE I Exercice 1 (5 points)

Aut	omatismes (5 points) San	s calculatrice Durée : 20 minutes
	Enoncé	Réponse
1)	Ecrire $\frac{7}{6} - \frac{1}{9}$ sous la forme d'une fraction irréductible.	
2)	Calculer 30 % de 30 % de 600.	
3)	Quel est le coefficient multiplicateur correspondant à une baisse de 12 % ?	
4)	Développer $(5x - 2)^2$.	
5)	Calculer $f(-2)$ avec $f(x) = 3x^3 - 2$.	
6)	Résoudre dans R l'équation $5x - 4 = 5x - 24$	
7)	Résoudre dans R l'équation $x^2 = 64$.	
8)	D est la droite d'équation $y = -5x + 3$. Compléter :	$A(2;) \in D$
9)	Déterminer l'équation réduite de la droite (MN) avec M(3;5) et N(-6;2).	
10)	Convertir 0,125 L en mL.	

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	otion	ı :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)			•							•	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/												1.1

PARTIE II

Calculatrice autorisée.

Cette partie est composée de trois exercices indépendants.

Exercice 2 (5 points), avec ordinateur

On considère la fonction Python suivante :

Cette fonction Python correspond à une fonction f définie sur [0; 8].

1.

- a. Donner l'expression de f(x). On rappelle que x^n se note x^{**} n en Python.
- b. Calculer f(0) et f(2,5).
- **2.** On admet que la fonction f est croissante sur [0; 2,5]. On considère la fonction Python balayage1 ci-dessous.

```
def balayage1(y,xmin,pas):
    x=xmin
    while f(x)<=y:
        x=x+pas
    return x-pas</pre>
```

Appeler balayage1(0,0,0.00001). Quel est le résultat trouvé, à 0,00001 près par défaut, et à quoi correspond-il ?

3. On admet que la fonction f est décroissante sur [2,5; 6,2].

En vous aidant de la fonction Python précédente balayage1, écrire une fonction Python balayage2 qui permet de résoudre dans [2,5;6,2] l'équation f(x) = k d'inconnue x, lorsque k est un réel appartenant à l'intervalle [f(6,2);f(2,5)].

Exercice 3 (5 points)

Une usine de fabrication de vélos électriques a une capacité de production de 70 vélos par jour.

Pour x vélos produits et vendus, avec x dans [0 ; 70], le chiffre d'affaires en centaines d'euros est donné par A(x)=8x et le coût de production en centaines d'euros est donné par $C(x)=0.001x^3+0.075x^2+3.8x+16$.

1. Montrer que le résultat R(x) = A(x) - C(x) réalisé par la vente de x vélos est donné par

$$R(x) = -0.001x^3 - 0.075x^2 + 4.2x - 16$$
.

2.

- **a.** Déterminer R'(x), où R' est la dérivée de la fonction R sur l'intervalle [0; 70].
- **b.** Montrer que pour tout x dans [0; 70] on a R'(x) = -0.003(x + 70)(x 20).
- **c.** Etudier le signe de R'(x) puis en déduire le tableau de variations de la fonction R sur [0; 70].
- **3.** Suivant ce modèle, combien de vélos l'entreprise doit-elle produire et vendre par jour pour réaliser un résultat maximum ? Quel est ce résultat maximum ?

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

Exercice 4 (5 points)

Un artiste de rue réalise des mosaïques à l'aide de carreaux de couleurs.

Il a 1 500 carreaux, dont 25 % sont jaunes, $\frac{2}{5}$ sont bleus et les autres sont rouges.

Certains des carreaux sont abîmés. Un dixième des carreaux bleus sont abîmés. Pour les jaunes, 96 % ne sont pas abîmés. Au total, il y a 117 carreaux abîmés.

1. Recopier sur votre copie et compléter le tableau suivant :

Carreaux	Jaunes	Bleus	Rouges	Total
Abîmés				117
Non abîmés				
Total				1500

- **2.** L'artiste prend un carreau au hasard, tous les carreaux ayant la même probabilité d'être choisis. Arrondir toutes les réponses au millième près, si nécessaire.
 - a. Déterminer la probabilité d'avoir un carreau abîmé.
 - b. Déterminer la probabilité d'avoir un carreau rouge qui n'est pas abîmé.
 - c. Déterminer la probabilité de ne pas avoir un carreau bleu.
 - **d.** On note A : l'évènement « le carreau est rouge » et B l'évènement « le carreau n'est pas abîmé ».

Calculer P_B(A), au millième près, et décrire par une phrase en français la signification de cette probabilité.