
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)											1.1

ÉVALUATION
CLASSE : Première
VOIE : □ Générale ⊠ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Biochimie-biologie
DURÉE DE L'ÉPREUVE : 2 h
Niveaux visés (LV) : LVA LVB
Axes de programme : Nutrition
CALCULATRICE AUTORISÉE : □Oui ⊠ Non
DICTIONNAIRE AUTORISÉ: □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\Box Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 8

Baccalauréat STL

BACCALAURÉAT TECHNOLOGIQUE

Série : Sciences et Technologies de Laboratoire

- « Biotechnologies » ou
- « Sciences physiques et chimiques en laboratoire »

Évaluation Biochimie - Biologie

Classe de première

Ce sujet est prévu pour être traité en deux heures.

L'usage de la calculatrice est interdit.

Ce sujet comporte 6 pages.

Compétences évaluées														
C1	C2	C3	C4	C5	C6									
Analyser un document scientifique ou technologique	Interpréter des données biochimiques ou biologiques	Argumenter un choix - Faire preuve d'esprit critique	Développer un raisonnement scientifique construit et rigoureux	Élaborer une synthèse sous forme de schéma ou d'un texte rédigé	Communiquer à l'aide d'une syntaxe claire et d'un vocabulaire scientifique adapté									
5	3	2	4	4	2									

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	ı :			
Liberté Égalité Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocation	on.)]									1.1

Le microbiote

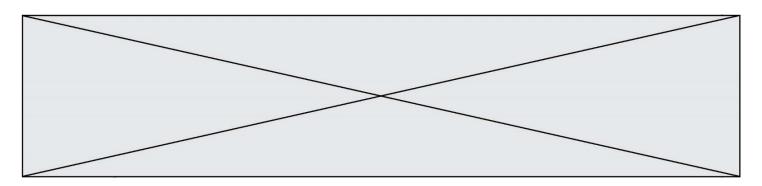
L'objectif de ce sujet est d'étudier le microbiote intestinal et de comprendre le lien qui existe entre le microbiote et le diabète de type 2.

Le microbiote intestinal correspond à l'ensemble des micro-organismes présents dans l'intestin.

Les micro-organismes composant le microbiote possèdent de nombreuses fonctions utiles pour leur hôte. Le microbiote vit en état de symbiose avec son hôte. Il est désormais admis que si certaines bactéries sont nocives, d'autres sont en revanche bonnes pour la santé. De plus en plus d'études scientifiques mettent en avant un lien entre la diversité du microbiote intestinal et le risque de maladies, notamment de maladies métaboliques comme le diabète ou l'obésité.

1. Le microbiote et la digestion

Le document 1 regroupe des données concernant le microbiote intestinal.


Q1. (C1) Représenter par un dessin les organes du tube digestif et les glandes annexes. Indiquer les différents organes de l'appareil digestif cités dans le document 1 et comportant du microbiote.

L'appareil digestif permet la transformation des molécules complexes en molécules simples facilement assimilables et utilisables par l'organisme. Ces transformations se font grâce à des enzymes contenues dans les différents sucs digestifs.

L'amidon, molécule contenue dans le pain, les pâtes, est en majeure partie dégradée par les sucs mais une petite partie est également dégradée par le microbiote au niveau du côlon. L'amidon est constitué de deux molécules amylose et amylopectine. Il s'agit de deux homopolymères dont la structure diffère par la présence de ramifications dans l'amylopeptine.

Le document 2 présente la structure de quelques glucides retrouvés lors de la dégradation de l'amidon.

- **Q2. (C5)** Schématiser les différentes étapes de la dégradation de l'amylose, retrouvé dans l'amidon, ainsi que les enzymes intervenant dans cette dégradation.
- Q3. (C1) Dessiner la formule semi-développée cyclique de la molécule d' α -D-glucopyranose selon la représentation plane de Haworth. Identifier sur cette formule les caractères « α » et « D » de la molécule.

Q4. (C1) Recopier la représentation cyclique de la molécule de maltose afin d'entourer et nommer une fonction chimique présente dans la molécule.

Les enzymes comme la maltase ou l'amylase dégradent mieux les molécules à certaines conditions de pH. Le document 3 regroupe les résultats d'expériences dont le but est de déterminer les conditions optimales de pH pour cette enzyme.

Q5. (C2) Interpréter les expériences du document 3 afin d'en déduire le pH auquel l'enzyme amylase extraite du microbiote fonctionne le mieux.

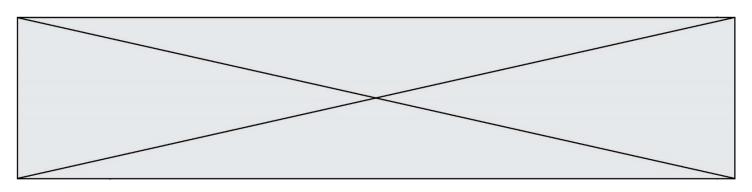
2. Microbiote, obésité et diabète

L'obésité est caractérisée par un excès de poids lié à l'accumulation de nutriments énergétiques dans le tissu adipeux. De plus, des études ont montré que le microbiote intestinal des personnes atteintes d'obésité est déséquilibré. Le document présente les résultats d'une expérience étudiant le rôle du microbiote dans l'obésité.

- **Q6. (C2)** Interpréter l'expérience du document 4. En déduire le lien entre le microbiote intestinal et l'obésité.
- Q7. (C3) Expliquer l'intérêt d'alimenter les souris par un régime pauvre en lipides.

Le diabète est une pathologie qui se manifeste par un dysfonctionnement de l'insuline, hormone qui régule la glycémie (quantité de glucose dans le sang). Le diabète de type 2 peut être une conséquence de l'obésité alors que le diabète de type 1 est une maladie auto-immune où les cellules productrices d'insuline sont détruites. Afin de mieux caractériser les conséquences d'un diabète de type 2 au niveau sanguin, la glycémie et l'insulinémie (quantité d'insuline dans le sang) sont mesurées chez deux patients (un témoin non diabétique et un diabétique de type 2) après ingestion massive de glucose (document5).

- **Q8. (C4)** Montrer, à partir du document 5, que le diabète de type 2 est lié à un dysfonctionnement de la régulation de la glycémie.
- **Q9. (C4)** Montrer, à partir des résultats du document 5, que le diabète de type 2 n'est pas provoqué par la destruction des cellules productrices d'insuline.


Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tior	n :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	ent sur	la con	vocati	on.)]	•								1.1

Dans le but d'approfondir la relation existant entre régulation de la glycémie et diabète de type 2, la fixation de l'insuline sur les récepteurs de ses cellules cibles (foie, muscle, tissu adipeux) et l'activité de ces récepteurs en réponse à cette fixation sont étudiées sur un modèle murin. Les résultats sont consignés dans le document 6.

Q10. (C1) Déduire, des résultats du document 6, l'impact de l'obésité sur l'action de l'insuline.

3. Synthèse

Q11. (C5) Rédiger une courte synthèse pour expliquer le lien qui existe entre le microbiote intestinal et le diabète de type 2.

Document 1 : Le microbiote chez l'être humain

Le microbiote désigne l'ensemble des micro-organismes qui vivent dans un environnement spécifique. Il en existe plusieurs capables de se développer à 37°C dans notre organisme.

Le microbiote intestinal est principalement localisé dans l'intestin grêle et le côlon. L'acidité gastrique empêche le développement de la plupart des microorganismes dans l'estomac. Seules quelques bactéries, telles que *Helicobacter pylori*, composent le microbiote gastrique.

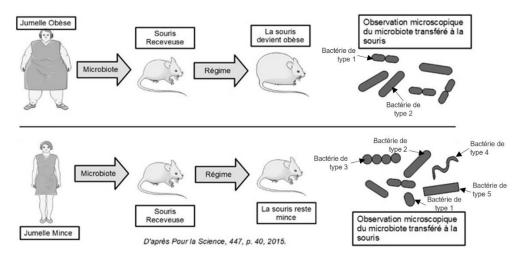
Le microbiote de la cavité buccale est très diversifié et contient notamment des streptocoques.

Document 2 : Structure moléculaire de quelques glucides

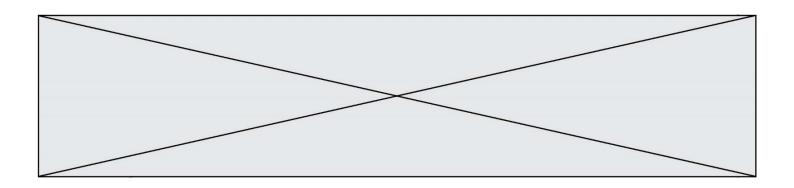
L'amidon est un glucide qui est d'abord dégradé en maltose grâce à une enzyme appelée amylase. Puis une autre enzyme, la maltase, dégrade le maltose en glucose.

	Schématisation de la structure moléculaire	Représentation cyclique semi-développée
Amidon	Amylopectine Amylose	/
Maltose	\Diamond	CH ₂ OH CH ₂ OH OH OH OH
Glucose	\Diamond	/

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	figure	ent sur	la con	vocatio	n.)		,									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

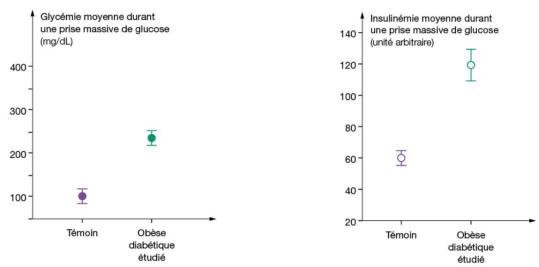

Document 3 : Etude des conditions d'action de l'amylase sur l'amidon

N° tube	1	2	3	4	5									
Contenu	Amidon +	Maltose +	Amidon +	Amidon +	Amidon +									
du tube	eau distillée	eau distillée	Amylase	Amylase	Amylase									
рН	7	7	5	7	9									
RÉSULTATS DES EXPÉRIENCES														
Test au lugol	Bleu- violacé	Jaune	Bleu-violacé	Jaune	Bleu-violacé									
Test à la liqueur de Fehling	-	+	-	+	-									


Document 4 : Expérience sur le rôle du microbiote dans l'obésité

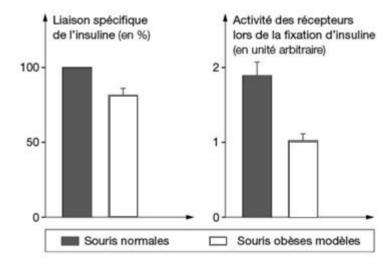
Le microbiote intestinal de vraies jumelles (donc ayant un génome identique), l'une obèse et l'autre mince, est transféré dans l'intestin de souris totalement dépourvues de microbiote intestinal.

Les souris sont placées dans des cages séparées. Le résultat obtenu sur les souris soumises à un régime pauvre en lipides et riche en fibres est décrit ci-dessous.



Illustrations réalisées à partir de la banque d'images Servier (smart.servier.com).

Document 5 : Les manifestations sanguines du diabète de type 2


La glycémie et l'insulinémie (quantité d'insuline dans le sang) sont mesurées chez deux patients (un témoin non diabétique et un diabétique de type 2) après ingestion massive de glucose.

D'après De Fronzo, Cahier Nutrition Diététique, 36, hors-série 1, 2001

Document 6 : Le lien entre le diabète de type 2 et l'obésité

On étudie la fixation de l'insuline sur les récepteurs de ses cellules cibles (foie, muscle, tissu adipeux) et l'activité de ces récepteurs en réponse à la fixation d'insuline. Ces études sont menées sur des souris normales non obèses et sur des souris obèses.

D'après Le Marchand-Brustel Y., Médecine et sciences, vol. 3, 1987