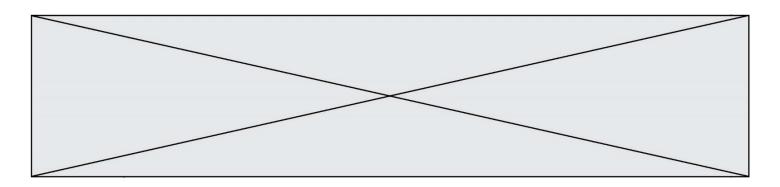
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)										,	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1


ÉVALUATION
CLASSE : Terminale – Épreuve de fin de cycle
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique
DURÉE DE L'ÉPREUVE : 2h
Niveaux visés (LV) : LVA LVB
Axes de programme :
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ: □Oui □ Non
⊠ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\Box Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 11

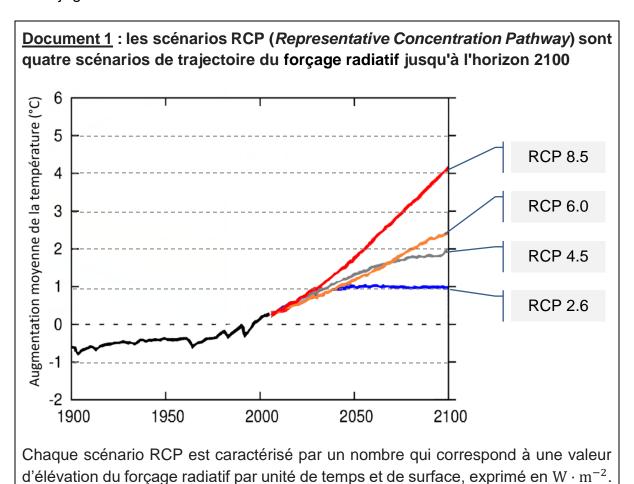
Parmi les trois exercices qui composent ce sujet, le candidat en traite obligatoirement deux.

L'exercice 1, du niveau de la classe de terminale, doit être obligatoirement abordé.

Pour le deuxième exercice, le candidat <u>choisit</u> entre l'exercice 2 et l'exercice 3 qui sont du niveau de la classe de première. Il indique son choix en début de copie.

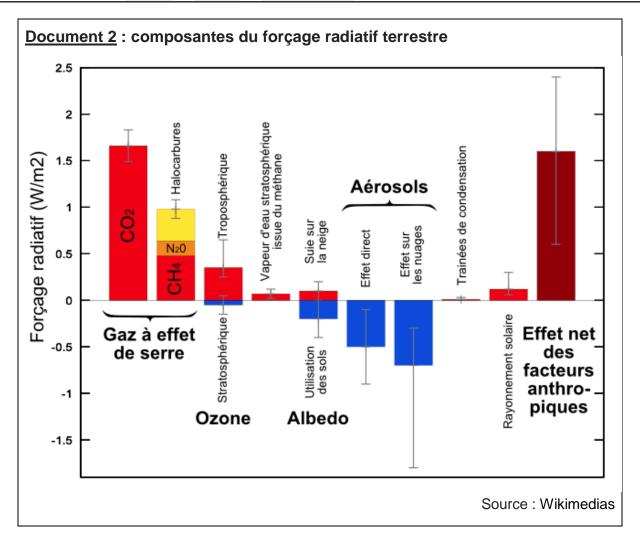
. 490 - 1 - 1	FNSSCICT6
Page 1 / 11	

Exercice 1 (obligatoire) - Niveau terminale

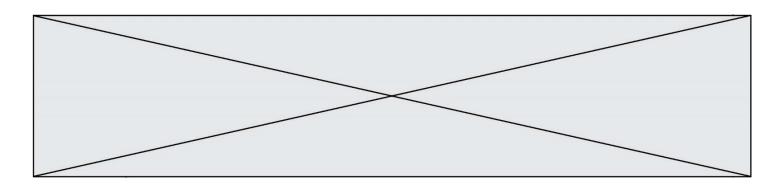

Thème « Science, climat et société »

Forçage radiatif et conséquences

Sur 10 points


L'Agence de la transition écologique (ADEME) publie en octobre 2020 une prévision des impacts climatiques à venir d'ici 2050 en France. Ces impacts concernent principalement l'augmentation des températures et les risques d'inondation qui en découlent.

L'objectif de cet exercice est de comprendre quelques effets sur le climat de la variation du forçage radiatif.



Source: d'après https://www.climate-chance.org

Modèle CCYC : © DNE Nom de famille (naissance) (Suivi s'il y a lieu, du nom d'usagi																				
Prénom(s)	: [
N° candidat	: [N° c	d'ins	scrip	tion	n :			
		numéro	s figure	ent sur	la con	vocatio	on.)	_	_	_	1									
RÉPUBLIQUE FRANÇAISE NÉ(e) le	:																			1.1

- 1.a. Définir la notion de « forçage radiatif ».
- **1.b.** Justifier que, par unité de temps et de surface terrestre, ce forçage radiatif s'exprime en W·m⁻².
- **1.c.** Expliquer en quoi le forçage radiatif est lié à la variation de la température terrestre.
- **2.** Expliquer les causes de l'augmentation du forçage radiatif depuis la révolution industrielle (1850).

3. On analyse l'effet du forçage radiatif sur le niveau des océans.

En tenant compte uniquement de la dilatation des océans, estimer la variation du niveau marin Δe à l'échelle du globe, en 2100, pour un RCP 4.5 qui correspond aux accords de Paris, à l'aide des données ci-dessous.

Données:

La variation ΔV d'un volume V_0 d'eau est proportionnelle à la variation de température ΔT selon la relation $\Delta V = \beta \cdot V_0 \cdot \Delta T$ avec le coefficient de dilatation thermique de l'eau $\beta = 2.6 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$.

La surface totale des océans est $S = 360 \times 10^6 \text{ km}^2$.

L'épaisseur de la couche superficielle océanique concernée est e=300 m.

4. À l'effet de la dilatation thermique s'ajoutent d'autres causes qui pourraient conduire à une élévation du niveau des océans de l'ordre du mètre.

Présenter les conséquences sur l'environnement et les activités humaines qu'aurait une telle élévation du niveau des océans.

L'un des paramètres qui influe sur le forçage radiatif est l'albédo terrestre moyen. On rappelle que l'albédo d'une surface correspond au rapport de l'énergie lumineuse réfléchie sur l'énergie lumineuse incidente. Le tableau suivant fournit quelques valeurs d'albédo suivant la nature des surfaces.

Type de Surface	Albédo
Mer / Océan	0,26
Glace	0,6
Neige fraîche	0,85

Albédo de différentes surfaces (source : Météo France)

- **5.** Préciser si une augmentation de l'albedo terrestre produit une augmentation ou une diminution du forçage radiatif. En déduire que la fonte des glaces (terrestres et marines) se traduit par une augmentation du forçage radiatif.
- **6.** Expliquer pourquoi la fonte des glaces est un facteur de rétroaction positive de l'échauffement global du climat. Il est possible d'appuyer le raisonnement sur un schéma.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tio	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANCAISE Né(e) le :	(Les nu	uméro	s figure	ent sur	la con	vocatio	on.)											1.1

Exercice 2 (au choix) - Niveau première

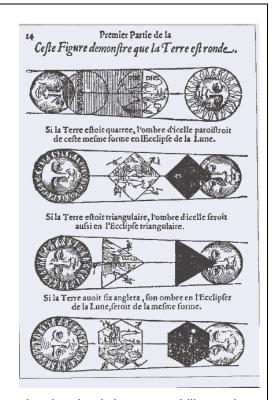
Thème « La Terre, un astre singulier »

La forme de la Terre à l'Antiquité

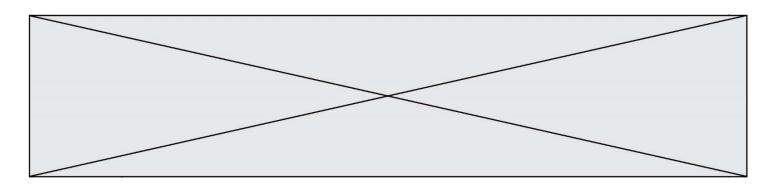
Sur 10 points

Dès l'Antiquité, les Grecs savaient que la Terre était sphérique. Ils ont même mesuré sa circonférence. Cet exercice étudie deux approches historiques liées à la connaissance de la forme de la Terre.

Partie A. La Terre est ronde


Voici un texte d'après Aristote, philosophe et savant grec (384-322 avant JC), dont la pensée a longtemps influencé les sciences.

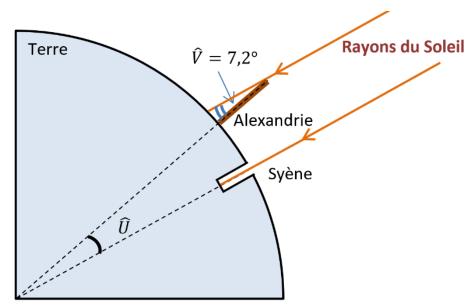
Document 1.


« Dans les éclipses de Lune, la ligne qui limite l'ombre est toujours une ligne incurvée. Puisque l'éclipse est due à l'interposition de la Terre entre la Lune et le Soleil, c'est la forme de la surface de la Terre, sphérique, qui produit cette ligne courbe. De plus, la manière dont les astres nous apparaissent ne prouve pas seulement que la Terre est ronde, mais aussi que son étendue est assez petite.

En effectuant un déplacement minime vers le Sud ou vers le Nord, nous voyons se modifier le cercle d'horizon; les astres au-dessus de nous changent considérablement et ce ne sont pas les mêmes qui brillent dans le ciel quand on va vers le Nord et quand on va vers le Sud. Certains astres visibles en Égypte ou vers Chypre sont invisibles dans les régions septentrionales. Par ailleurs les astres qui, dans les régions septentrionales, sont visibles à tout instant, connaissent un coucher dans les pays cités plus haut. Tout cela ne montre pas seulement que la Terre est ronde, mais encore qu'elle a la forme d'une sphère de modeste dimension ; autrement, on n'apercevrait pas si vite les effets d'un déplacement si court. »

Du Ciel, II, 14, Éd. des Belles Lettres, 1965

Le dessin ci-dessus, qui illustre la démonstration d'Aristote, est extrait de la Cosmographie de Petrus Apianus (1581).



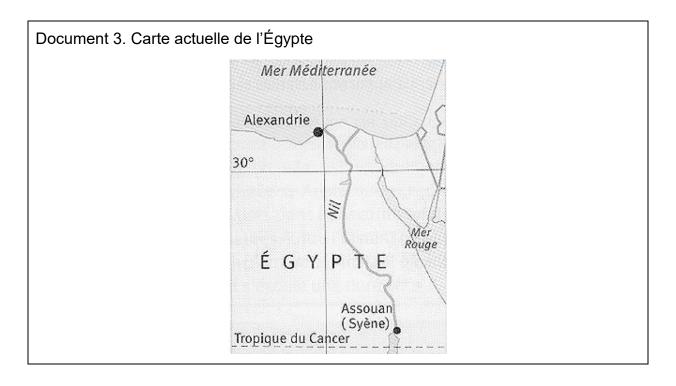
- **1-** Extraire du texte deux observations qui permettent à Aristote d'affirmer que la Terre est ronde.
- 2- Donner un autre argument qui permet aujourd'hui de dire que la Terre n'est pas plate.
- 3- Citer un objet, autre que la sphère, susceptible de projeter une ombre circulaire.

Partie B. Mesure de la circonférence de la Terre

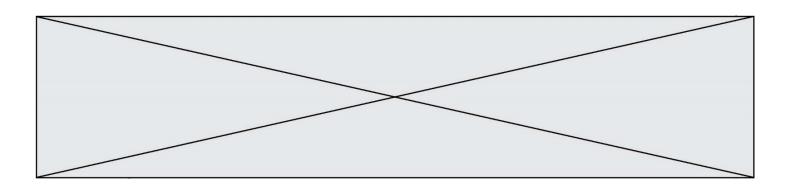
Document 2.

Ératosthène (276 - 194 av JC) est célèbre pour sa méthode de mesure de la circonférence de la Terre. Il était connu qu'à Syène (Assouan aujourd'hui), le 21 juin à midi, on pouvait voir l'image du Soleil se refléter au fond d'un puits. Cela signifie que le Soleil est exactement à la verticale du puits le jour du solstice d'été, c'est-à-dire que Syène est sur le tropique du Cancer. Mais le même jour, à la même heure, dans la ville d'Alexandrie située plus au Nord on constate que les rayons du soleil n'atteignent pas le fond des puits. On mesure que les rayons du Soleil font, avec la verticale, un angle d'un cinquantième de tour (soit 7,2°) comme noté dans le schéma ci-dessous.

Pour mener son calcul, Ératosthène s'appuie sur plusieurs hypothèses :


- la Terre est sphérique,
- Syène est sur le tropique du Cancer,
- Syène et Alexandrie sont sur le même méridien,

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otior	ı :			
Liberté Égalité Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)											1.1


- il faut 50 jours à une caravane de chameaux (qui parcourait une distance quotidienne de 100 stades) pour relier Syène et Alexandrie.
- les rayons du Soleil arrivant sur la Terre sont parallèles entre eux.

Précision : le stade utilisé par Ératosthène est une ancienne unité de longueur valant environ 157 m.

- **4-** En tenant compte de ces hypothèses, déterminer la mesure de l'angle \widehat{U} au centre de la Terre. Justifier.
- 5-a- Déterminer la distance, en kilomètre, entre Syène et Alexandrie.
- **5-b-** En refaisant les calculs d'Ératosthène, vérifier que son estimation de la circonférence de la Terre est proche de la véritable circonférence de 40 000 km.

6- En vous aidant de la carte du document 3, quelles hypothèses d'Ératosthène peuvent pourtant être remises en question ?

Exercice 3 (au choix) - Niveau première

Thème « Son et musique, porteurs d'information »

La numérisation et le stockage d'un son

Sur 10 points

Cet exercice s'intéresse à différents aspects de la numérisation d'un son et du stockage du fichier obtenu.

Partie A. Échantillonnage et quantification

- 1- Une plateforme de service de musique en ligne propose de la musique avec une qualité « 16-Bit/44.1 kHz ». Expliquer ce que cela signifie.
- 2- Pour chacune des questions suivantes, recopier sur la copie la réponse qui convient:
- 2-a- Pour échantillonner à 20 000 Hz un signal audio analogique, quelle est la durée de l'intervalle de temps entre deux mesures de la tension du signal audio ?

$$5 \times 10^{-5} \, \text{s}$$

$$5 \times 10^{-4} \text{ s}$$

$$5 \times 10^{-3} \text{ s}$$

$$2 \times 10^{-4} \text{ s}$$

2-b- Lorsqu'on quantifie un échantillon sur 24 bits, combien de niveaux de tension différents a-t-on la possibilité de coder ?

$$2 \times 24 = 48$$

$$24^2 = 576$$

$$2 \times 24 = 48$$
 ; $24^2 = 576$; $2^{24} = 16777216$

2-c- Dans cette question, on s'appuie sur le document 1 fourni en annexe. Parmi les choix ci-dessous, quelle est la fréquence d'échantillonnage choisie pour le signal audio représenté?

2 000 Hz

12 500 Hz

26 000 Hz

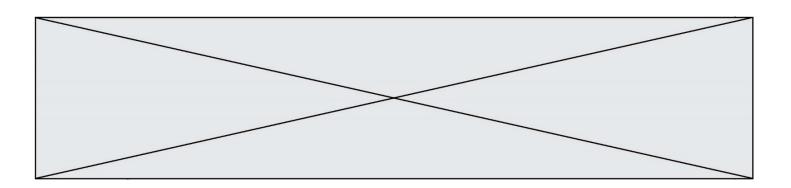
44 100 Hz

3- Cette question s'appuie également sur le document 1 fourni en annexe. On procède à la quantification, par codage sur 3 bits, des valeurs de la tension obtenues après l'échantillonnage du signal audio. Après quantification, la tension (exprimée en volt), peut prendre pour valeurs les 8 nombres entiers relatifs compris entre -4 et +3, la valeur quantifiée d'une tension étant l'entier le plus proche de cette tension.

Sur le document 1, à rendre avec la copie, représenter la courbe des tensions après échantillonnage et quantification.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	n :			
Liberté · Égalité · Fraternité RÉPLINI JOHE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Partie B. Taille de fichier


La taille T (en bit) d'un fichier audio numérique s'exprime en fonction de la fréquence d'échantillonnage f_e (en hertz), du nombre n de bits utilisés pour la quantification, de la durée Δt de l'enregistrement (en secondes) et du nombre k de voies d'enregistrement (une en mono, deux en stéréo) selon la relation :

$$T = f_e \times n \times \Delta t \times k$$

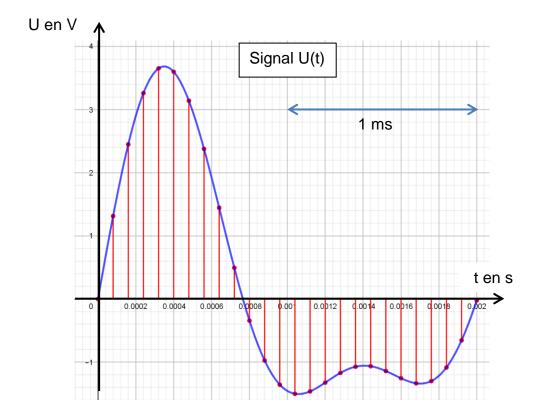
Dans un studio d'enregistrement, on enregistre un morceau de musique en stéréo en choisissant un encodage sur 24 bits et une fréquence d'échantillonnage de 192 kHz.

- **4-** Vérifier que l'espace de stockage nécessaire pour enregistrer une seconde de musique avec cette qualité est de 1,152 Mo.
- **5-** Un espace de stockage de 200 Mo est-il suffisant pour enregistrer un fichier contenant un morceau de musique de cinq minutes dans cette qualité ?
- **6-** Le dispositif d'encodage et de compression FLAC (Free Lossless Audio Codec) permet de compresser le fichier obtenu à la question précédente avec un taux de compression de 45 %. Avec 200 Mo de stockage, dispose-t-on de suffisamment d'espace pour enregistrer ce fichier compressé ?

On rappelle que le taux de compression est le quotient de la taille du fichier compressé par la taille du fichier initial.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	otion	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	s figure	ent sur	la con	vocatio	on.)											1.1

Document réponse à rendre avec la copie


Exercice 3

La numérisation et le stockage d'un son

Document 1 : Signal audio en fonction du temps

En ordonnée, la tension U est exprimée en volt, en abscisse le temps t est exprimé en seconde.

Lors de l'échantillonnage du signal, les mesures sont réalisées aux instants repérés par des lignes verticales.

