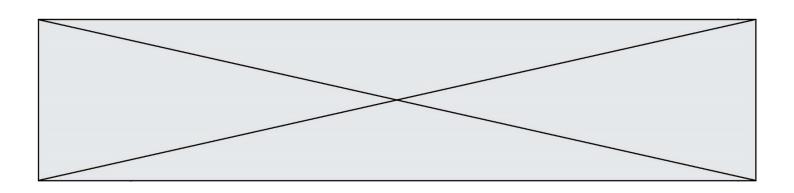
Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUIR LOUIF FRANÇAISE NÉ(e) le :	(Les no	uméros	figure	ent sur	la con	vocation	on.)]									1.1

Séries technologiques : classe de première Épreuve commune de contrôle continu : Mathématiques


PARTIE I : Automatismes (5 points)

Sans calculatrice

Pour chaque question, indiquer la réponse dans la case correspondante. Aucune justification n'est demandée.

	Enoncé	Réponse
1)	Quel est l'entier égal à $\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$?	
2)	600 minutes est-il plus proche de $\frac{1}{2}$ journée, 1 journée ou 1 semaine ?	
3)	Calculer les deux tiers de 96.	
4)	$f(x) = -x^2 + x. \text{ Calculer } f(3).$	
5)	Un coureur a parcouru 24 km. Ces 24 km représentent $\frac{4}{5}$ de la course. Quelle est la longueur de la course ?	
6)	Les points marqués appartiennent à la droite, tracée cicontre dans un repère, d'équation : $y = mx + p$. Déterminer m .	
7)	Déterminer l'ordonnée exacte du point de la droite d'abscisse 5.	
8)	Développer et réduire : $(x + 3)(x - 7)$.	
9)	60 % des élèves d'un lycée sont des filles. Parmi ces filles, 25 % portent des lunettes. Quel pourcentage des élèves de ce lycée représente les filles portant des lunettes ?	
10)	Donner un nombre décimal d tel que $\frac{2}{3} < d < \frac{3}{4}$.	

Durée: 20 minutes

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	1 :			
Liberé · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE RÉPUBLIQUE FRANÇAISE	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Séries technologiques : classe de première Épreuve commune de contrôle continu : Mathématiques

PARTIE II

Calculatrice autorisée selon la réglementation en vigueur

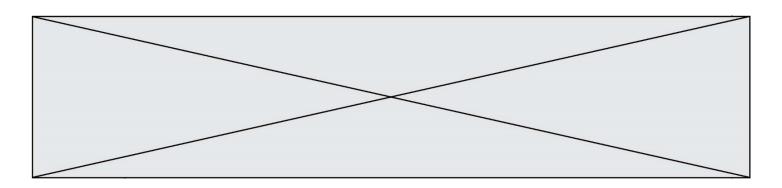
Cette partie est composée de trois exercices indépendants.

EXERCICE 2 : (5 POINTS)

L'objectif de cet exercice est de comparer l'évolution d'un salaire dans chacune des deux entreprises.

Entreprise A : salaire mensuel initial de 1 500 € par mois avec augmentation chaque année du salaire mensuel de 2,5 %.

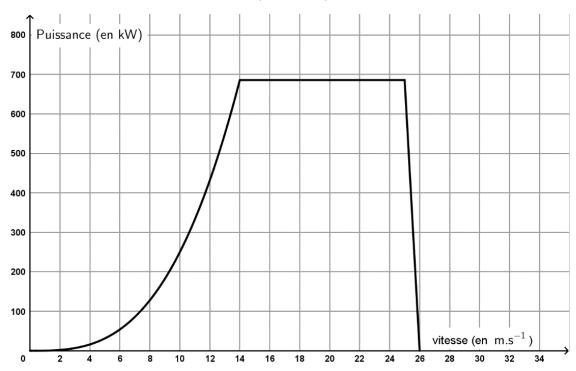
Entreprise B : salaire initial de 1 500 € par mois avec augmentation annuelle du salaire mensuel de 40 €.


Pour tout entier naturel n, on note u_n le salaire mensuel en euro au $\mathbf{1}^{\text{er}}$ janvier de l'année (2019+n) dans l'entreprise A et v_n celui dans l'entreprise B.

On a donc $u_0 = v_0 = 1500$.

On donne la feuille de calcul suivante :

	Α	В	С	D
1	Année	n	Salaire mensuel entreprise A	Salaire mensuel entreprise B
2	2019	0	1500	1500
3	2020	1	1537,50	1540
4	2021	2	1575,94	1580
5	2022	3	1615,34	1620
6	2023	4	1655,72	1660
7	2024	5	1697,11	1700
8	2025	6	1739,54	1740
9	2026	7	1783,03	1780
10	2027	8		
11	2028	9		
12	2029	10		


- 1. Quelles formules a-t-on pu saisir dans les cellules C3 et D3 de la feuille de calcul ci-dessus pour obtenir, par recopie vers le bas, les salaires mensuels dans les entreprises A et B ?
- 2. Calculer le salaire mensuel dans l'entreprise A en 2027.
- 3. Quelle est la nature de la suite (u_n) ? Exprimer pour tout n dans \mathbb{N} , u_{n+1} en fonction de u_n .

- 4. Quelle est la nature de la suite (v_n) ? Exprimer pour tout n dans \mathbb{N} , v_{n+1} en fonction de v_n .
- 5. En 2029, quel sera l'écart de salaire mensuel entre les deux entreprises ?

EXERCICE 3 (5 POINTS)

Une éolienne transforme par son rotor, l'énergie cinétique du vent en énergie mécanique puis électrique. Le graphique ci-dessous donne P la puissance électrique (en kW) d'une éolienne en fonction de la vitesse du vent (en $m. s^{-1}$).

- 1. Lecture graphique. Répondre aux questions suivantes avec la précision permise par le graphique.
- 1.a. Quelle est la puissance fournie par éolienne quand la vitesse du vent est de 12 m. s⁻¹ ?
- 1.b. Quelles sont les vitesses du vent en $\mathrm{m.\,s^{-1}}$ conduisant l'éolienne à produire 600 kW ?
- 1.c. Quelle est la puissance fournie par l'éolienne quand la vitesse du vent est de $25~{\rm km.\,h^{-1}}$?
- 2. Modélisation. Lorsque la vitesse du vent est comprise entre 2 m. s⁻¹ et 14 m. s⁻¹, la puissance est modélisée par la fonction P définie sur [2;14] par $:P(v)=\frac{v^3}{4}$.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	otio	n :			
	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)			•							,	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/												1.1

- 2.a. Calculer P(12).
- 2.b. On admet que la fonction P est croissante sur [2 ; 14]. On considère la fonction suivante écrite en langage Python :

1	<pre>def balayage(e) :</pre>
2	x = 12
3	while $0.25*x**3 < 650$:
4	x = x+e
5	return (x-e , x)

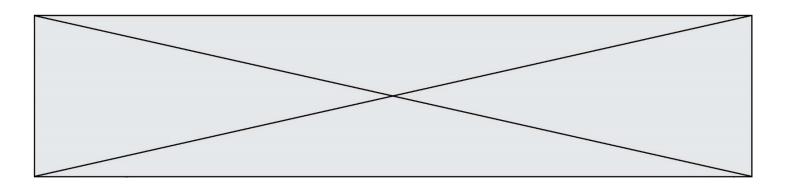
Une exécution de l'instruction balayage (0.125) conduit au résultat : (13.75, 13.875)

À quelle question cette fonction balayage permet-elle de répondre ?

EXERCICE 4 (5 POINTS)

Une petite entreprise artisanale de fabrication de biscuits possède trois ateliers nommés A, B et C qui produisent des biscuits selon deux recettes : la recette standard et la recette traditionnelle.

L'entreprise a produit 2400 biscuits en une journée.


L'atelier A a produit 60% des biscuits de l'entreprise.

L'atelier B a produit 15% des biscuits de l'entreprise.

Le tableau ci-dessous présente le nombre de biscuits produits par atelier et par recette durant cette journée.

	Atelier A	Atelier B	Atelier C	Total
Recette traditionnelle	576	60	150	
Recette standard			450	
Total			600	2400

- 1.a. Recopier le tableau et le compléter par les données manquantes en utilisant les informations données dans l'énoncé.
- 1.b. Calculer le pourcentage de la production de l'entreprise correspondant aux biscuits de recette traditionnelle.
- 1.c. Quelle part, en pourcentage, des biscuits de recette standard a été produite par l'atelier C?
- 2. On prélève au hasard un biscuit dans l'ensemble de la production journalière, on admet que les tirages des biscuits sont équiprobables. On note les événements suivants :

A: « le biscuit a été produit par l'atelier A » ; B: « le biscuit a été produit par l'atelier B » ; C: « le biscuit a été produit par l'atelier C » ; T: « le biscuit est de recette traditionnelle ».

- 2.a. Calculer la probabilité de l'événement \mathcal{C} , que l'on note : $P(\mathcal{C})$.
- 2.b. Calculer la probabilité $P(C \cap T)$.
- 2.c. Quelle est la probabilité qu'un biscuit de recette traditionnelle provienne de l'atelier C ? En donner la valeur arrondie au millième.