
Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	crip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)											1.1

PARTIE I

Automatismes (5 points) Sans calculatrice Durée : 20 minutes

	Énoncé	Réponse
1)	Dans un lycée, 30% des élèves sont en première et parmi eux, 60% sont des filles. Calculer le pourcentage des filles parmi les élèves de première de ce lycée.	
2)	Donner l'écriture scientifique de $0,034 \times 10^7$	
3)	Déterminer le nombre entier égal à $(10^4 \times 10^{-3})^2$	
4)	Développer l'expression $3x(1-2x)+4$.	
5)	Factoriser l'expression $(x-4)(x+3) - 5(x+3)$.	
6)	6 5 4 4	Graphiquement, on lit que l'image de 0 par la fonction f est :
7)	La courbe ci-dessus est la courbe représentative d'une fonction f définie sur l'intervalle $[-1;5]$.	Graphiquement, on lit que, dans l'intervalle $[-1;5]$, l'ensemble des solutions de l'inéquation $f(x) > 6$ est :
8)	Dans un repère du plan, la droite d a pour équation réduite $y = -3x + 4$.	A (5;) ∈ d
9)	Compléter les coordonnées ci-contre :	B (; 7) ∈ d

Modèle CCYC : ©DNE																				
Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)	느	느	느	<u></u>	<u></u>				<u> </u>	<u></u>	<u></u>									닏
Prénom(s) :																				
N° candidat :													N° (d'ins	scrip	otio	n :			
Liberté Égalité - Fraternité Péministre Beancaise Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)	Π]	-								1.1

PARTIE II

Calculatrice autorisée

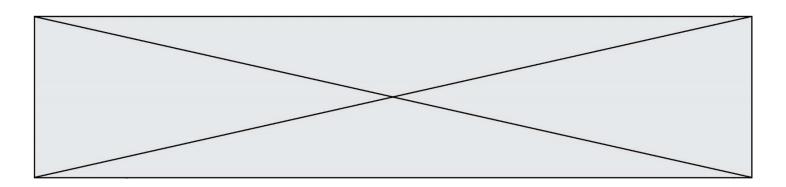
Cette partie est composée de trois exercices indépendants.

Exercice 2 (5 points):

Un nouveau virus informatique se propage. Le virus récupère le carnet d'adresses de l'utilisateur et envoie des messages qui, à leur tour, infectent de nouveaux ordinateurs.

Le premier jour, 45 000 ordinateurs d'un réseau sont infectés.

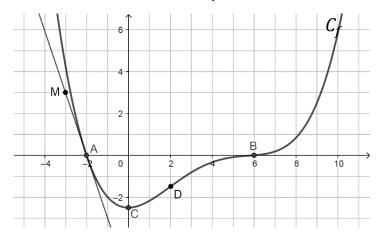
La société de sécurité informatique chargée de protéger ce réseau met à jour son antivirus. Chaque jour, elle parvient à nettoyer 15 % des machines infectées la veille.


Malheureusement, chaque jour, 10 000 nouveaux ordinateurs sont victimes de ce virus.

- 1. Justifier par le calcul que le nombre d'ordinateurs nettoyés le deuxième jour est de 6 750.
- 2. Justifier par le calcul que le nombre d'ordinateurs infectés le deuxième jour est de 48 250.
- 3. Pour tout entier n supérieur ou égal à 1, u(n) représente le nombre d'ordinateurs infectés le n-ième jour. On a donc $u(1) = 45\,000$.
 - a. La suite u est-elle arithmétique? géométrique? Justifier.
 - b. Expliquer pourquoi, pour tout entier n supérieur ou égal à 1, on a : $u(n+1) = 0.85 \ u(n) + 10\ 000$
- 4. Les responsables de la société de sécurité informatique préparent une campagne de sensibilisation pour inciter les utilisateurs à recourir à un antivirus et ainsi éviter la propagation du virus.

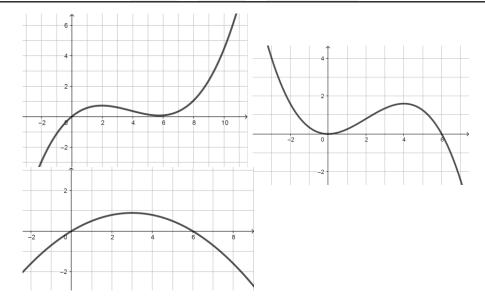
La société décide de lancer sa campagne lorsqu'au moins 65 000 ordinateurs seront infectés.

1	n=1
2	U=45000
3	while
	::
4	n=
5	U=


Recopier et compléter l'algorithme ci-contre, afin qu'il affiche le jour du début de cette campagne de sensibilisation.

Exercice 3: (5 points)

Soit f une fonction définie et dérivable sur ${\bf R}$. On note f ' la fonction dérivée de la fonction f. On donne ci-dessous la courbe ${\cal C}_f$ représentant la fonction f.


La courbe C_f coupe l'axe des abscisses au point A(-2; 0). L'axe des abscisses est tangent à la courbe C_f au point B d'abscisse 6. La tangente à la courbe au point A passe par le point M(-3; 3). La courbe C_f admet une deuxième tangente parallèle à l'axe des abscisses au point C d'abscisse 0. De plus, D(2; -1,5) $\in C_f$.

À partir du graphique et des données de l'énoncé, répondre aux questions suivantes :

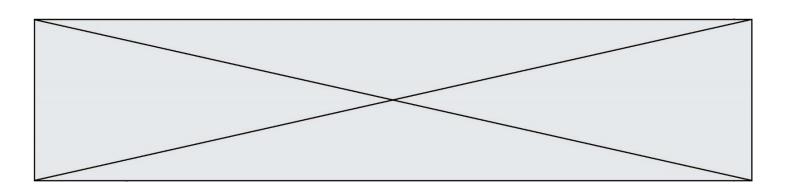
- 1. a. Déterminer f'(-2).
 - b. Déterminer les solutions de l'équation f'(x) = 0.
- 2. Dresser, sans justification, le tableau de variations de la fonction f sur \mathbf{R} .
- 3. Une seule des trois courbes tracées ci-dessous est la représentation graphique de la fonction f $^{\prime}$. Déterminer laquelle. Justifier la réponse.

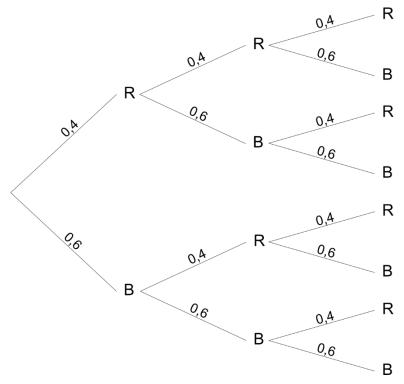
Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																	
Prénom(s) :																	
N° candidat :										N° (d'ins	scrip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUIR LOUIE FRANÇAISE NÉ(e) le :	uméro	s figure	ent sur	la con	vocatio	on.)											1.1

Courbe 1 Courbe 3 Courbe 2

4. On donne $f'(2) = \frac{3}{4}$.

Calculer les coordonnées du point d'intersection de la tangente à la courbe C_f au point D avec l'axe des abscisses.


Exercice 4: (5 points)


On considère une urne contenant six boules blanches et quatre boules rouges. Un jeu consiste à tirer une boule, noter sa couleur et la remettre dans l'urne et ceci trois fois. Pour chaque partie :

- si les trois boules tirées sont rouges, le joueur gagne 100 €,
- si exactement deux boules tirées sont rouges, il gagne 15 €,
- si une seule boule tirée est rouge il gagne 5 €,
- dans les autres cas, il ne gagne rien.

Soit X la variable aléatoire qui, à chaque partie, associe le gain du joueur en euro.

L'arbre pondéré suivant décrit cette situation. R est l'événement « la boule tirée est rouge », et B est l'événement « la boule tirée est blanche ».

- 1. a. Montrer que P(X = 100) = 0.064.
 - b. Déterminer la loi de probabilité de la variable aléatoire X.
- 2. a. Montrer que l'espérance mathématique de la variable aléatoire X est 12,88.
 - b.Pour jouer une partie, le joueur doit payer 10 €. Ce jeu est-il favorable au joueur ? Expliquer.
- 3. Le jeu n'étant pas assez rentable pour l'organisateur, celui-ci envisage deux solutions :
 - soit augmenter le prix de chaque partie de 3 € et donc passer à 13 €;
 - soit rester à 10 € mais diminuer chaque gain de 3 €, c'est-à-dire ne gagner que 97 €, 12 € ou 2 €.

Quelle est la solution la plus rentable pour l'organisateur ? Expliquer la démarche.