
Prénom(s):	
A19	
	N° d'inscription :
(Les numéros figurent sur la convocation.) Liberté · Égalité · Fraternité Né(e) le :	

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE : Première ST2S
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : □ Générale ⊠ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Physique-chimie pour la santé
DURÉE DE L'ÉPREUVE : 2h
Niveaux visés (LV) : LVA LVB
Axes de programme :
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
⊠ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être
dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est
nécessaire que chaque élève dispose d'une impression en couleur.
□ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour
de l'épreuve.
Nombre total de pages : 13

Exercice 1 : Lait infantile et intolérance au lactose (5 points)

Un nourrisson allaité par sa mère durant trois mois présente une courbe de croissance normale. Suite à des problèmes de santé de la mère, l'enfant est nourri avec un lait infantile premier âge (lait A). Au bout de quelques jours, le bébé présente divers symptômes : amaigrissement et troubles digestifs inconfortables (diarrhées, coliques, ballonnements...). Le pédiatre prescrit alors un autre lait (lait B) et l'état de santé de l'enfant s'améliore. Quelle est l'origine de cette amélioration ?

Pour le savoir, une première partie de l'exercice permettra d'aborder l'apport énergétique du lait A consommé par le bébé, une deuxième partie permettra de s'interroger sur l'incidence de la teneur en lactose de ce lait.

Document 1 : Les vertus du lait maternel

Le lait maternel s'avère l'aliment idéal pour le nourrisson. La quantité et la qualité du lait maternel évoluent au fil des jours pour satisfaire les besoins nutritionnels du nouveau-né puis du nourrisson. Mais la composition du lait évolue également au cours d'une même tétée et tout au long de la journée : ainsi le taux de lipides habituellement bas en début de tétée augmente progressivement. Le lait maternel apporte également de nombreux anticorps.

Un extrait de la composition moyenne du lait maternel est donnée dans le tableau suivant :

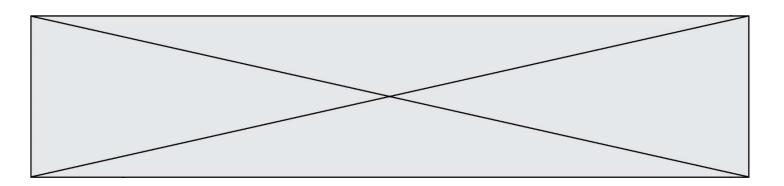
	Pour 100 mL de lait maternel
eau	88 g
glucides (lactose)	6,8 g
protides	1,2 g
lipides	3,8 g

Sources: http://campus.cerimes.fr et https://www.lllfrance.org

Document 2 : Énergie apportée par différentes catégories de macronutriments

Protides: 1 g de protides apporte 4 kcal. Glucides: 1 g de glucides apporte 4 kcal. Lipides: 1 g de lipides apporte 9 kcal

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	figure	nt sur	la con	vocatio	n.)			,							ı	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/												1.1


Docume	ent 3 : Extrait de l'étiquette de la b	oîte de	e lait en poudre A	
	Analyse moyenne		Pour 100 g de poudre	
	Energie	kJ	2179	
		kcal	521	
	Protides	g	9,6	
	Caséine	g	2,9	
	Protéines solubles	g	6,7	
	Taurine	mg	35	
	Carnitine	mg	8,5	
	Glucides	g	58,5	
	Dont sucres	g	58,5	
	Lactose	g	58,5	
	Lipides	g	27,6	
	dont acides gras saturés	g	11,1	
	dont acide linoléique	mg	4200	
	dont acide α-linolénique	mg	510	
	dont acide arachidonique	mg	64	
	dont acide docosahexaénoïque	mg	64	

Document 4 : L'intolérance au lactose

Lors de la digestion, le lactose réagit avec l'eau pour donner du galactose et du glucose grâce à l'action d'une enzyme, la lactase selon l'équation ci-dessous :

L'intolérance au lactose résulte de l'insuffisance de production d'une enzyme, la lactase, au niveau de l'intestin grêle. En l'absence de lactase, la réaction cidessus n'a pas lieu. Cela induit des troubles gastro-intestinaux tels que des ballonnements, des coliques ou des diarrhées pouvant conduire à un état de déshydratation sévère. Il existe plusieurs formes d'intolérances au lactose :

- L'intolérance congénitale au lactose : correspond à un déficit congénital en lactase dès la naissance. Cette intolérance est très rare.
- L'intolérance primaire au lactose : correspond à une baisse progressive de l'activité de la lactase qui a lieu entre l'enfance et l'adolescence. L'intolérance

primaire au lactose est donc plutôt rencontrée chez l'enfant, l'adolescent et l'adulte.

• L'intolérance secondaire au lactose : est la conséquence d'une diarrhée ayant altéré la muqueuse intestinale et de ce fait ayant diminué de façon passagère le taux de lactase présent dans l'intestin du nourrisson. Elle reste de courte durée.

Source : thèse de Madame MOINARD, <u>La prise en charge diététique de</u> <u>l'intolérance au lactose chez le nourrisson et le jeune enfant, POITIERS 2015</u>

Données utiles :

- formule brute du lactose : $C_{12}H_{22}O_{11}$
- masses molaires atomiques (en $g.\,mol^{-1}$) : $M_{\rm C}$ = 12,0 ; $M_{\rm O}$ = 16,0 ; $M_{\rm H}$ = 1,0
- **1.** Montrer, en utilisant les **documents 1 et 2**, qu'un volume égal à 100 mL de lait maternel apportent environ une énergie d'une valeur égale à 66 kcal.

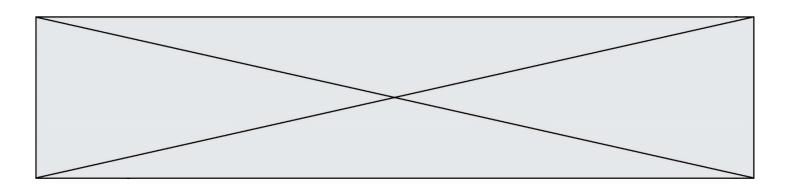
Pour reconstituer un volume de lait infantile égal à 100 mL, il faut dissoudre trois mesures de poudre, ayant chacune une masse égale à 5,0 g, dans un volume d'eau valant 90 mL.

- **2.** Calculer, à l'aide du **document 3**, la valeur de l'énergie, exprimée en kilocalories, apportée par un volume égal à 100 mL de lait infantile A reconstitué.
- **3.** Proposer une interprétation de l'origine de l'état d'amaigrissement constaté chez le nourrisson.
- **4.** Nommer la réaction décrite dans le **document 4**. Déduire, en justifiant la réponse, si la molécule de lactose est un glucide simple ou complexe.

Après reconstitution, un volume de 100 mL de lait infantile A contient une masse de lactose de valeur égale à 7,5 g.

5. Montrer que la valeur de la concentration molaire en lactose dans un volume de 100 mL de lait infantile A reconstitué est égale à $2.2 \times 10^{-1} \ mol. L^{-1}$.

Le lait infantile B reconstitué a une concentration molaire en lactose valant 5,3 \times $10^{-2}\ mol.\ L^{-1}$.


6. Déduire à l'aide du **document 4**, une argumentation permettant de comprendre l'origine des symptômes observés chez le nourrisson et sur l'intérêt de la prescription du pédiatre.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																			
Prénom(s) :																			
N° candidat :												N° c	d'ins	scrip	otion	n :			
Liberté · Égalité · Fraternité Né(e) le :	(Les nu	ıméros	figure	ent sur	la con	vocatio	on.)				ı					1		I	
RÉPUBLIQUE FRANÇAISE	1 7		l /	ı	1	l /	l	I	ı	l									1.1

Exercice 2 : Quelques molécules présentes dans une cigarette (5 points)

La fumée dégagée par une cigarette contient plus de 4000 molécules dont la plupart sont nocives. Certaines de ces molécules sont représentées dans le **document 1**. En outre des informations concernant certaines de ces molécules sont apportées dans le **document 2**.

Document 1 : Quelques molécul	es présentes dans une cigai	rette
Molécule A	Molécule B	Molécule C
H H H-C-C-C-H H O H	CH ₃ —OH	CH ₂ =O
Formule brute : C ₃ H ₆ O	Formule brute : CH ₄ O	Formule brute : CH ₂ O
Molécule D	Molécule E	Molécule F
CH ₂ —CH—CH ₂ I I OH OH OH	CH ₃ -COOH	CH ₂ CH ₂ CH C
Formule brute : C ₃ H ₈ O ₃	Formule brute : $C_2H_4O_2$	Formule brute : C ₁₀ H ₁₄ N ₂
Molécule G	Molécule H	Molécule I
CH_3 — CH_2 — CH = O		O CH ₃ -C —O—CH ₂ —CH ₃
Formule brute : C ₃ H ₆ O	Formule brute : C ₄ H ₈	

Document 2 : Quelques informations sur des molécules contenues dans une cigarette

<u>Information n°1 :</u> L'acide acétique est l'acide carboxylique qui possède deux atomes de carbone.

<u>Information n°2</u>: La propanone, ou acétone, est la plus petite molécule de la famille des cétones.

<u>Information n°3 :</u> Bien connu et utilisé sous le nom de glycérol (notamment pour la synthèse de triglycérides) cette molécule se nomme aussi propan-1,2,3-triol car elle possède trois fonctions alcool.

<u>Information n°4 :</u> La nicotine est la molécule formée de deux cycles d'atomes dont un est hexagonal (il comporte 6 atomes).

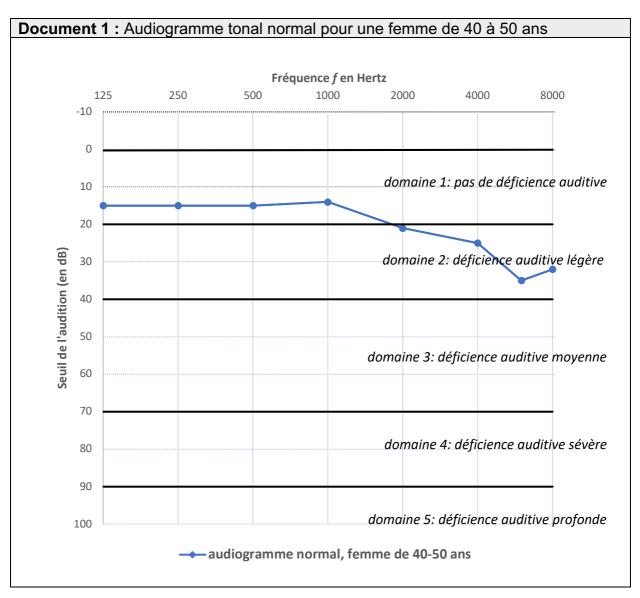
<u>Information n°5</u>: L'éthanoate d'éthyle est un ester à l'odeur de pomme présent dans certains arômes artificiels utilisés pour parfumer certains tabacs...

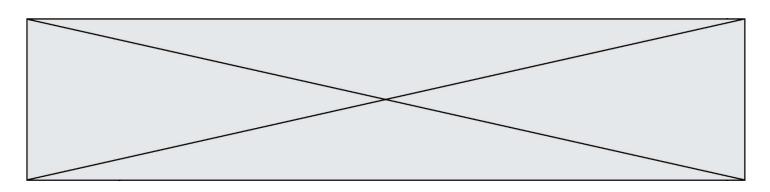
<u>Information n°6 :</u> Appelé formaldéhyde je suis le plus petit représentant de la famille des aldéhydes

- 1. Représenter la molécule H sous forme développée.
- 2. Représenter la molécule A sous forme semi-développée.
- 3. Représenter la molécule F sous forme topologique.
- 4. Écrire la formule brute de la molécule I.
- **5.** Identifier parmi les molécules constituant la fumée d'une cigarette, celles qui sont isomères. Justifier la réponse.
- **6.** À l'aide de l'information n°1 contenue dans le **document 2** et des règles de nomenclature, donner l'autre nom de l'acide acétique.
- **7.** À l'aide de l'information n°6 contenue dans le **document 2** et des règles de nomenclature, donner l'autre nom du formaldéhyde.
- **8.** Retrouver la molécule associée correspondant à chaque information portée dans le **document 2**.

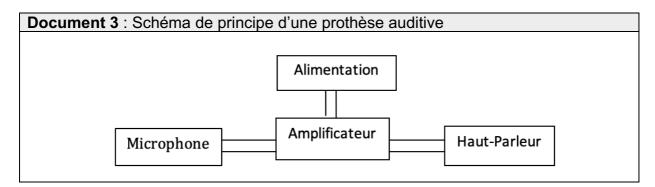
Un fumeur absorbe en moyenne 3 mg de la molécule F.

9. Calculer la masse molaire de cette molécule.


<u>Données</u>: M(H) = 1 g.mo Γ^1 ; M(C) = 12 g.mo Γ^1 ; M(N) = 14 g.mo Γ^1


Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)		1									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

10. Déterminer la quantité de matière correspondant à la masse qu'absorbe en moyenne un fumeur.


Exercice 3: Identification et compensation d'une perte auditive (5 points)

L'audiogramme tonal normal pour une femme dans la tranche d'âge 40-50 ans est représenté sur le **document 1**.

Document 2 : Seuils d'audition re	elevés lo	rs de l'	examen	de Mme	В.		
Fréquence (en Hertz)	125	250	500	1000	2000	4000	
seuil d'audition de Mme B. (en dB)	50	58	63	64	62	74	

- 1. Compte tenu de la nature des mesures reportées dans un audiogramme tonal, proposer un protocole à suivre pendant l'examen médical afin d'obtenir le graphe présenté dans le **document 1**.
- **2.** Donner la valeur du seuil normal d'audition pour une femme dans la tranche d'âge 40-50 ans à une fréquence de 1000 Hertz.
- **3.** D'après l'audiogramme tonal, préciser, en expliquant la réponse, si une femme dans la tranche d'âge 40-50 ans perçoit mieux les sons graves ou les sons aigus.

Une patiente de 45 ans, Mme B., souffrant de troubles auditifs, se rend chez son médecin. Celui-ci l'oriente vers un médecin otologiste afin de réaliser un audiogramme tonal. Les seuils d'audition relevés lors de l'examen médical de Mme B. sont donnés dans le **document 2**.

- **4.** Représenter et légender l'audiogramme tonal de Mme B. sur l'annexe à rendre avec la copie.
- **5.** À l'appui de la représentation effectuée à la question précédente, qualifier la déficience auditive de Mme B. en expliquant la réponse.

Le médecin conseille à Mme B le port d'une prothèse auditive dont le schéma de principe est donné dans le **document 3**.

6. Expliquer brièvement le principe de fonctionnement de cette prothèse.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s):																		
N° candidat :											N° (d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPLIBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)]									1.1

Exercice 4 : Le test d'effort (5 points)

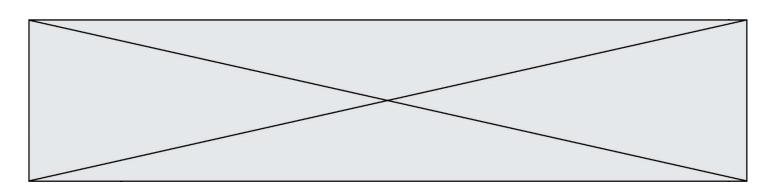
Dans le cadre d'un suivi médical prescrit par un cardiologue, un patient de 50 ans effectue un test d'effort, c'est-à-dire un examen consistant à l'enregistrement d'un électrocardiogramme durant le déroulement d'un <u>exercice physique</u> calibré.

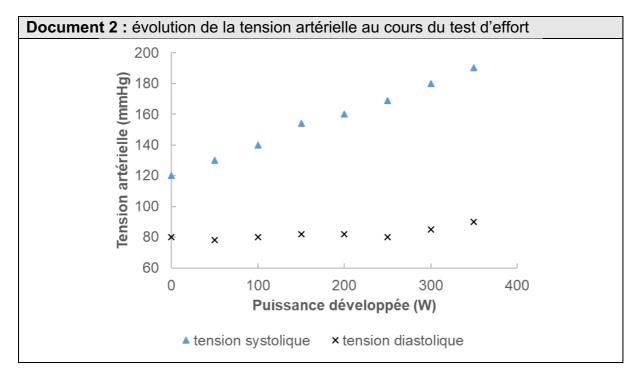
Pendant l'effort, la fréquence cardiaque du patient ne doit pas dépasser un certain seuil dont la valeur est donnée par le **document 1**.

Au cours du test, la puissance développée par le patient augmente progressivement de 0 à 350 W et sa tension artérielle suit une évolution représentée par le graphique du **document 2**.

La valeur du volume d'éjection systolique dépend de divers facteurs présentés brièvement dans le **document 3**.

Donnée: 1 mL = 10^{-6} m³


Document 1 : fréquence cardiaque maximale pendant un test d'effort

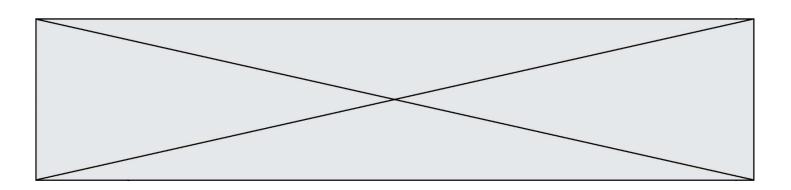

Pendant l'effort, la fréquence cardiaque f_C du patient est mesurée en continu à l'aide d'un cardiofréquencemètre. La fréquence cardiaque maximale, exprimée en battements par minute, à ne pas dépasser pendant l'effort est évaluée à l'aide de la relation empirique :

 f_{Cmax} = (220 – âge du patient) × 0,80

Par exemple, pour un patient de 60 ans :

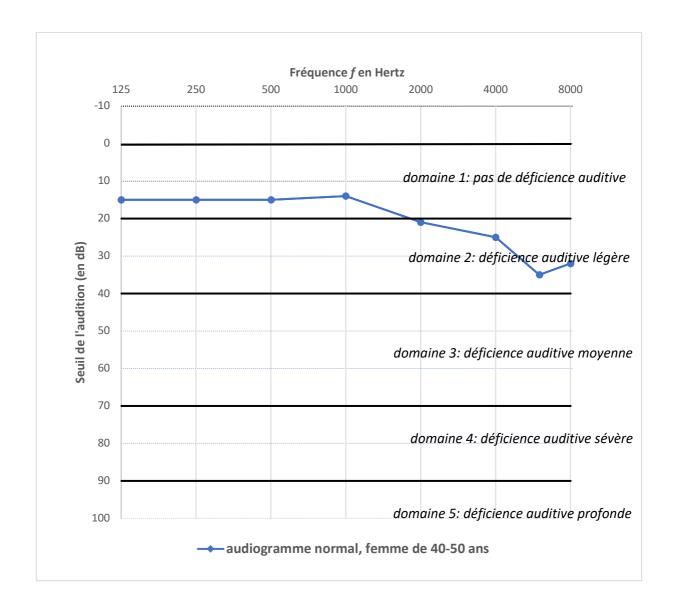
 $f_{Cmax} = (220 - 60) \times 0.80 = 128$ battements par minute.

Document 3 : le volume d'éjection systolique


Le volume d'éjection systolique V_{ES} est le volume de sang que le cœur éjecte à chaque battement (systole). Il dépend d'une multitude de facteurs, notamment de la taille du cœur, de son remplissage, de la force et de la durée de la contraction et de la résistance à l'éjection du sang dans la circulation systémique. Chez l'homme, il est proche de 100 mL. Un entraînement sportif régulier permet d'accroître la valeur du volume V_{ES} jusqu'à atteindre 150 mL en plein effort.

- **1.** Dans le **document 1**, la fréquence cardiaque f_C est exprimée en battements par minute. Indiquer quelle est l'unité de fréquence dans le système international.
- 2. Montrer que la fréquence cardiaque du patient au cours du test ne doit pas dépasser une valeur de 2,3 exprimée dans l'unité du système international.
- 3. En exploitant le **document 2**, décrire brièvement l'évolution de la tension artérielle du patient au cours du test et notamment l'écart entre la tension systolique et la tension diastolique.

Au cours du test, le débit cardiaque D_C du patient augmente jusqu'à atteindre une valeur de 3.3×10^{-4} m³·s⁻¹, soit 0.33 L·s⁻¹.


Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	า :			
	(Les n	uméros	figure	nt sur	la con	ocatio	n.)										1	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/												1.1

- **4.** Indiquer la relation permettant d'exprimer le débit cardiaque D_C en fonction de la fréquence cardiaque f_C et du volume d'éjection systolique V_{ES} .
- **5.** En effectuant un calcul et en argumentant à l'aide du **document 3**, indiquer si le patient a une pratique sportive régulière.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tior	า :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	vocatio	on.)											1.1

Exercice 3 : annexe à rendre avec la copie

