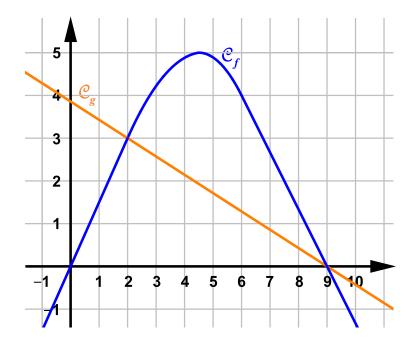
PARTIE I


Automatismes (5 Points, 20 minutes) Sans calculatrice

Pour chaque question, indiquer la réponse dans la case correspondante. Aucune justification n'est demandée

	Énoncé	Réponse
1)	Un sac contient 11 jetons rouges, 3 jetons bleus, et 6 jetons verts. Déterminer, en pourcentage, la proportion de jetons verts dans le sac.	
2)	Donner le résultat sous forme simplifiée de $\frac{3}{2}$ – $2 \times \frac{1}{3}$.	
3)	Développer et réduire $3x(x-1)+(x+2)^2$.	
4)	f est la fonction définie par $f\left(x\right)=2x^2+3x-5$. Calculer l'image de -1 par f .	
5)	Donner la forme factorisée de $(2x-3)(x+2)-5(x+2)$.	
6)	La surface S d'une sphère de rayon R est donnée par la formule $S=4\pi\times R^2$. Exprimer R en fonction de S .	
7)	Calculer et cm³, le volume V d'un cylindre de rayon $R=0,4$ cm et de hauteur $h=5$ cm en prenant pour π la valeur 3. On rappelle que $V=\pi\times R^2\times h$.	

Sébastien THENOT Page 1 sur 5

	Énoncé	Réponse
8)	Déterminer l'équation réduite de la droite (D) passant par les points $A(2;4)$ et $B(6;6)$.	

Résoudre graphiquement avec la précision permise par le graphique :

9)	f(x) = 0

$$10) \quad f(x) = g(x)$$

Sébastien THENOT Page 2 sur 5

PARTIE II

Calculatrice autorisée selon la réglementation en vigueur

Cette partie est composée de trois exercices indépendants

Exercice 2 (5 Points)

En 2016, la production de voitures électriques d'un grand groupe a été de 53 000 véhicules sur un de ses sites. Par rapport à 2016, le nombre de véhicules électriques produits sur le site en 2017 a augmenté de 5%. La direction décide de maintenir chaque année cette progression de 5% par rapport à la production de l'année précédente.

1) Déterminer le nombre de véhicules produits au cours de l'année 2017.

On modélise le nombre de véhicules électriques produits sur le site, au cours de l'année 2016+n, par la suite (v_n) .

- 2) Exprimer v_{n+1} en fonction de v_n . Quelle est la nature de la suite (v_n) ?
- 3) On souhaite déterminer l'année au cours de laquelle la production de véhicules électriques aura doublé par rapport à la production de 2016.

On considère le programme ci-dessous écrit en langage Python.

- a. Recopier et compléter les **lignes 3**, **4** et **6** de ce programme afin qu'il réponde au problème.
- b. Apporter une réponse au problème posé à l'aide de la calculatrice.

Sébastien THENOT Page 3 sur 5

Exercice 3 (5 Points)

Dans le cadre d'un projet expérimental, des lycéens ont fabriqué une fusée de feu d'artifice qui est lancée à partir d'une plateforme située à 8 m de hauteur.

La hauteur de la fusée (en mètre) atteinte en fonction du temps t (en dixième de seconde) est modélisée par la fonction f définie par :

$$f(t) = -0.5t^2 + 10t + 8 \text{ pour } t \in [0; 20].$$

- 1) Calculer f(10). Interpréter le résultat dans le contexte de l'exercice.
- 2) L'explosion de la fusée ne peut être déclenchée qu'à une hauteur minimum de 40 mètres. Les lycéens cherchent le temps de vol à programmer avant l'explosion. On note g la fonction définie sur $\begin{bmatrix} 0 \\ \vdots \\ 20 \end{bmatrix}$ par $g(t) = -0.5t^2 + 10t 32$.
 - **a.** Vérifier que g(t) = -0.5(t-4)(t-16).
 - **b.** Montrer que le problème revient à résoudre l'inéquation $g(t) \ge 0$.
 - c. Résoudre l'inéquation et répondre au problème.

Sébastien THENOT Page 4 sur 5

Exercice 4 (5 Points)

Un fabricant d'ampoules possède deux machines notées A et B. La machine A fournit 65% de la production et la machine B fournit le reste. Certaines ampoules présentent un défaut de fabrication :

- à la sortie de la machine A, 8% des ampoules présentent un défaut ;
- à la sortie de la machine B, 4% des ampoules présentent un défaut.

La production quotidienne du fabricant est de 15 000 ampoules par jours.

- 1) Combien d'ampoules proviennent de chacune des machines ?
- 2) Recopier et compléter le tableau croisé des effectifs :

Machine Défaut	A	В	Total
Avec défaut	780		
Sans défaut			
Total			15 000

- 3) Calculer la fréquence en pourcentage des ampoules ayant un défaut.
- 4) On définit les événements suivants :
 - A: « l'ampoule provient de la machine A »;
 - D : « l'ampoule présente un défaut ».

Déterminer $P(A \cap D)$.

Sébastien THENOT Page 5 sur 5