Correction de l'exercice 4

- 1. Par lecture graphique, puisque la courbe rencontre l'axe des abscisses aux points d'abscisses x = -2 et x = 3. Les solutions sont donc : $\{-2, 3\}$
- 2. Par définition, la tangente (T) a pour équation : $y = f'(x_0) \times (x x_0) + f(x_0)$ Pour $x_0 = 1$, l'équation devient : $y = f'(-1) \times (x + 1) + f(-1)$ Or, graphiquement, f(-1) = 2De plus, f'(x) = -x + 0.5Donc f'(-1) = 1.5

D'où, l'équation devient :
$$y = 1.5 \times (x + 1) + 2 = 1.5x + 1.5 + 2 = 1.5x + 3.5$$

 $(T) : y = 1.5x + 3.5$

- 3. Soit E(1; 5).
 - a) L'image de 1 par la fonction y = 1.5x + 3.5 est : $y = 1.5 \times 1 + 3.5 = 1.5 + 3.5 = 5$. Par conséquent, le point E appartient à (T).
 - b) La courbe (C) a pour équation : y = a(x + 2)(x 3)Or, le point de coordonnées (0; 3) appartient à la courbe.

$$Donc: 3 = a \times (-6)$$

D'où,
$$a = -0.5$$

Ainsi, l'équation de la courbe (C) devient :
$$y = f(x) = -0.5(x + 2)(x - 3) = -0.5x^2 + 0.5x + 3$$

De plus, $f'(x) = -x + 0.5$

Par conséquent, la tangente (T') aura pour équation :

$$(T'): y = f'(x_0) \times (x - x_0) + f(x_0) = f'(x_0) \times x - f'(x_0) \times x_0 + f(x_0)$$

(T'): $y = (-x_0 + 0.5) \times x - (-x_0 + 0.5) \times x_0 + (-0.5x_0^2 + 0.5x_0 + 3)$

Or,
$$E(1; 5) \in (T')$$

Donc,
$$5 = (-x_0 + 0.5) - (-x_0 + 0.5) \times x_0 + (-0.5x_0^2 + 0.5x_0 + 3)$$

 $5 = -x_0 + 0.5 + x_0^2 - 0.5x_0 - 0.5x_0^2 + 0.5x_0 + 3$
 $5 = 0.5x_0^2 - x_0 + 3.5$
 $0.5x_0^2 - x_0 - 1.5 = 0$
 $0.5(x_0^2 - 2x_0 - 3) = 0$

Le discriminant vaut :
$$\Delta = (-2)^2 - 4 \times (1) \times (-3) = 16 = 4^2$$

L'équation admet deux solutions :

$$x_0' = \frac{2-4}{2} = -1$$
 et $x_0'' = \frac{2+4}{2} = 3$

Or, la tangente (T) se trouve au point d'abscisse $x_0 = -1$.

Donc, (T') est la tangente à la courbe (C) au point d'abscisse : $x_0 = 3$.

En conclusion, le point qu'on cherche est le point de coordonnées : (3; 0).